Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

The Chemistry of Lyophilized Blood Products.

Fernandez-Moure J, Maisha N, Lavik EB, Cannon JW.

Bioconjug Chem. 2018 Jul 18;29(7):2150-2160. doi: 10.1021/acs.bioconjchem.8b00271. Epub 2018 Jun 13. Review.

PMID:
29791137
2.

Science in a Global Community.

van Hest J, Lavik EB, Smith BD, Zheng G, Rotello VM.

Bioconjug Chem. 2017 Feb 15;28(2):279-281. doi: 10.1021/acs.bioconjchem.7b00058. No abstract available.

PMID:
28196421
3.

Materials design at the interface of nanoparticles and innate immunity.

Szeto GL, Lavik EB.

J Mater Chem B. 2016 Mar 7;4(9):1610-1618. Epub 2016 Jan 29. No abstract available.

4.

Editorial.

van Hest J, Lavik EB, Smith BD, Zheng G, Rotello V.

Bioconjug Chem. 2016 Jan 20;27(1):1-2. doi: 10.1021/acs.bioconjchem.6b00001. No abstract available.

PMID:
26786716
5.

Controlled release of photoswitch drugs by degradable polymer microspheres.

Groynom R, Shoffstall E, Wu LS, Kramer RH, Lavik EB.

J Drug Target. 2015;23(7-8):710-5. doi: 10.3109/1061186X.2015.1060978.

6.

Steroid-Loaded Hemostatic Nanoparticles Combat Lung Injury after Blast Trauma.

Hubbard WB, Lashof-Sullivan MM, Lavik EB, VandeVord PJ.

ACS Macro Lett. 2015 Apr 21;4(4):387-391. Epub 2015 Mar 23.

7.

Editorial.

van Hest J, Lavik EB, Smith BD, Zheng G, Rotello VM.

Bioconjug Chem. 2015 Feb 18;26(2):163-5. doi: 10.1021/acs.bioconjchem.5b00002. Epub 2015 Jan 15. No abstract available.

PMID:
25588645
8.

Intravenously administered nanoparticles increase survival following blast trauma.

Lashof-Sullivan MM, Shoffstall E, Atkins KT, Keane N, Bir C, VandeVord P, Lavik EB.

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10293-8. doi: 10.1073/pnas.1406979111. Epub 2014 Jun 30.

9.

Tuning ligand density on intravenous hemostatic nanoparticles dramatically increases survival following blunt trauma.

Shoffstall AJ, Everhart LM, Varley ME, Soehnlen ES, Shick AM, Ustin JS, Lavik EB.

Biomacromolecules. 2013 Aug 12;14(8):2790-7. doi: 10.1021/bm400619v. Epub 2013 Jul 24.

10.

A tunable synthetic hydrogel system for culture of retinal ganglion cells and amacrine cells.

Hertz J, Robinson R, Valenzuela DA, Lavik EB, Goldberg JL.

Acta Biomater. 2013 Aug;9(8):7622-9. doi: 10.1016/j.actbio.2013.04.048. Epub 2013 May 3.

11.

Tissue engineering the retinal ganglion cell nerve fiber layer.

Kador KE, Montero RB, Venugopalan P, Hertz J, Zindell AN, Valenzuela DA, Uddin MS, Lavik EB, Muller KJ, Andreopoulos FM, Goldberg JL.

Biomaterials. 2013 Jun;34(17):4242-50. doi: 10.1016/j.biomaterials.2013.02.027. Epub 2013 Mar 11.

12.

Intravenous hemostatic nanoparticles increase survival following blunt trauma injury.

Shoffstall AJ, Atkins KT, Groynom RE, Varley ME, Everhart LM, Lashof-Sullivan MM, Martyn-Dow B, Butler RS, Ustin JS, Lavik EB.

Biomacromolecules. 2012 Nov 12;13(11):3850-7. doi: 10.1021/bm3013023. Epub 2012 Oct 8.

13.

Engineering therapies in the CNS: what works and what can be translated.

Shoffstall AJ, Taylor DM, Lavik EB.

Neurosci Lett. 2012 Jun 25;519(2):147-54. doi: 10.1016/j.neulet.2012.01.058. Epub 2012 Feb 4. Review.

14.

Nanospheres delivering the EGFR TKI AG1478 promote optic nerve regeneration: the role of size for intraocular drug delivery.

Robinson R, Viviano SR, Criscione JM, Williams CA, Jun L, Tsai JC, Lavik EB.

ACS Nano. 2011 Jun 28;5(6):4392-400. doi: 10.1021/nn103146p. Epub 2011 Jun 9.

15.

Intravenous hemostat: nanotechnology to halt bleeding.

Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB.

Sci Transl Med. 2009 Dec 16;1(11):11ra22. doi: 10.1126/scitranslmed.3000397.

16.

Exogenous modulation of intrinsic optic nerve neuroprotective activity.

Grozdanic SD, Lazic T, Kuehn MH, Harper MM, Kardon RH, Kwon YH, Lavik EB, Sakaguchi DS.

Graefes Arch Clin Exp Ophthalmol. 2010 Aug;248(8):1105-16. doi: 10.1007/s00417-010-1336-7. Epub 2010 Mar 13.

17.

A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space.

Hynes SR, Lavik EB.

Graefes Arch Clin Exp Ophthalmol. 2010 Jun;248(6):763-78. doi: 10.1007/s00417-009-1263-7. Epub 2010 Feb 19. Review.

PMID:
20169358
18.

New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres.

Robinson R, Bertram JP, Reiter JL, Lavik EB.

J Microencapsul. 2010 May;27(3):263-71. doi: 10.3109/02652040903131285.

19.

Using polymer chemistry to modulate the delivery of neurotrophic factors from degradable microspheres: delivery of BDNF.

Bertram JP, Rauch MF, Chang K, Lavik EB.

Pharm Res. 2010 Jan;27(1):82-91. doi: 10.1007/s11095-009-0009-x. Epub 2009 Nov 17.

PMID:
19921405
20.

Engineering the CNS stem cell microenvironment.

Williams CA, Lavik EB.

Regen Med. 2009 Nov;4(6):865-77. doi: 10.2217/rme.09.62. Review.

21.

Functionalized poly(lactic-co-glycolic acid) enhances drug delivery and provides chemical moieties for surface engineering while preserving biocompatibility.

Bertram JP, Jay SM, Hynes SR, Robinson R, Criscione JM, Lavik EB.

Acta Biomater. 2009 Oct;5(8):2860-71. doi: 10.1016/j.actbio.2009.04.012. Epub 2009 May 4.

22.

Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier.

Rauch MF, Hynes SR, Bertram J, Redmond A, Robinson R, Williams C, Xu H, Madri JA, Lavik EB.

Eur J Neurosci. 2009 Jan;29(1):132-45. doi: 10.1111/j.1460-9568.2008.06567.x.

23.

Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo.

Rauch MF, Michaud M, Xu H, Madri JA, Lavik EB.

J Biomater Sci Polym Ed. 2008;19(11):1469-85. doi: 10.1163/156856208786140409.

PMID:
18973724
24.

Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months.

Bertram JP, Saluja SS, McKain J, Lavik EB.

J Microencapsul. 2009 Feb;26(1):18-26. doi: 10.1080/02652040802095250. Erratum in: J Microencapsul. 2009 Feb;26(1):26.

PMID:
18465288
25.

A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation.

Hynes SR, Rauch MF, Bertram JP, Lavik EB.

J Biomed Mater Res A. 2009 May;89(2):499-509. doi: 10.1002/jbm.a.31987.

PMID:
18435406
26.

Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor.

Nkansah MK, Tzeng SY, Holdt AM, Lavik EB.

Biotechnol Bioeng. 2008 Aug 1;100(5):1010-9. doi: 10.1002/bit.21822.

PMID:
18431801
27.

Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells.

Royce Hynes S, McGregor LM, Ford Rauch M, Lavik EB.

J Biomater Sci Polym Ed. 2007;18(8):1017-30.

PMID:
17705996
28.

Neuroprotection of retinal ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres.

Ward MS, Khoobehi A, Lavik EB, Langer R, Young MJ.

J Pharm Sci. 2007 Mar;96(3):558-68.

PMID:
17177208
29.
30.

A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo.

Ford MC, Bertram JP, Hynes SR, Michaud M, Li Q, Young M, Segal SS, Madri JA, Lavik EB.

Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2512-7. Epub 2006 Feb 10.

31.

Retinal progenitor cell xenografts to the pig retina: morphologic integration and cytochemical differentiation.

Warfvinge K, Kiilgaard JF, Lavik EB, Scherfig E, Langer R, Klassen HJ, Young MJ.

Arch Ophthalmol. 2005 Oct;123(10):1385-93.

PMID:
16219730
32.

Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction.

Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R.

Biomaterials. 2005 Aug;26(23):4892-7. Epub 2005 Jan 21.

PMID:
15763269
33.

Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors.

Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ.

Biomaterials. 2005 Jun;26(16):3187-96.

PMID:
15603813
34.

Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells.

Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY.

Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3024-9. Epub 2002 Feb 26.

Supplemental Content

Loading ...
Support Center