Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

Budinich M, Bourdon J, Larhlimi A, Eveillard D.

PLoS One. 2017 Feb 10;12(2):e0171744. doi: 10.1371/journal.pone.0171744. eCollection 2017.

2.

Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.

Prigent S, Frioux C, Dittami SM, Thiele S, Larhlimi A, Collet G, Gutknecht F, Got J, Eveillard D, Bourdon J, Plewniak F, Tonon T, Siegel A.

PLoS Comput Biol. 2017 Jan 27;13(1):e1005276. doi: 10.1371/journal.pcbi.1005276. eCollection 2017 Jan.

3.

Control of fluxes in metabolic networks.

Basler G, Nikoloski Z, Larhlimi A, Barab√°si AL, Liu YY.

Genome Res. 2016 Jul;26(7):956-68. doi: 10.1101/gr.202648.115. Epub 2016 May 19.

4.

Plankton networks driving carbon export in the oligotrophic ocean.

Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho LP, Espinoza JCI, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S; Tara Oceans coordinators, Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas SG, Bork P, de Vargas C, Iudicone D, Sullivan MB, Raes J, Karsenti E, Bowler C, Gorsky G.

Nature. 2016 Apr 28;532(7600):465-470. doi: 10.1038/nature16942. Epub 2016 Feb 10.

5.

Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions.

Sulpice R, Nikoloski Z, Tschoep H, Antonio C, Kleessen S, Larhlimi A, Selbig J, Ishihara H, Gibon Y, Fernie AR, Stitt M.

Plant Physiol. 2013 May;162(1):347-63. doi: 10.1104/pp.112.210104. Epub 2013 Mar 20.

6.

Stoichiometric capacitance reveals the theoretical capabilities of metabolic networks.

Larhlimi A, Basler G, Grimbs S, Selbig J, Nikoloski Z.

Bioinformatics. 2012 Sep 15;28(18):i502-i508. doi: 10.1093/bioinformatics/bts381.

7.

F2C2: a fast tool for the computation of flux coupling in genome-scale metabolic networks.

Larhlimi A, David L, Selbig J, Bockmayr A.

BMC Bioinformatics. 2012 Apr 23;13:57. doi: 10.1186/1471-2105-13-57.

8.

A distinct metabolic signature predicts development of fasting plasma glucose.

Hische M, Larhlimi A, Schwarz F, Fischer-Rosinsk√Ĺ A, Bobbert T, Assmann A, Catchpole GS, Pfeiffer AF, Willmitzer L, Selbig J, Spranger J.

J Clin Bioinforma. 2012 Feb 2;2:3. doi: 10.1186/2043-9113-2-3.

9.

Robustness of metabolic networks: a review of existing definitions.

Larhlimi A, Blachon S, Selbig J, Nikoloski Z.

Biosystems. 2011 Oct;106(1):1-8. doi: 10.1016/j.biosystems.2011.06.002. Epub 2011 Jun 25. Review.

PMID:
21708222
10.

FFCA: a feasibility-based method for flux coupling analysis of metabolic networks.

David L, Marashi SA, Larhlimi A, Mieth B, Bockmayr A.

BMC Bioinformatics. 2011 Jun 15;12:236. doi: 10.1186/1471-2105-12-236.

11.

The influence of the local sequence environment on RNA loop structures.

Schudoma C, Larhlimi A, Walther D.

RNA. 2011 Jul;17(7):1247-57. doi: 10.1261/rna.2550211. Epub 2011 May 31.

12.

MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber.

Hoehenwarter W, Larhlimi A, Hummel J, Egelhofer V, Selbig J, van Dongen JT, Wienkoop S, Weckwerth W.

J Proteome Res. 2011 Jul 1;10(7):2979-91. doi: 10.1021/pr101109a. Epub 2011 May 26.

PMID:
21563841

Supplemental Content

Loading ...
Support Center