Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae.

Fisher KJ, Buskirk SW, Vignogna RC, Marad DA, Lang GI.

PLoS Genet. 2018 May 25;14(5):e1007396. doi: 10.1371/journal.pgen.1007396. eCollection 2018 May.

2.

Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids.

Marad DA, Buskirk SW, Lang GI.

Nat Ecol Evol. 2018 May;2(5):882-889. doi: 10.1038/s41559-018-0503-9. Epub 2018 Mar 26.

PMID:
29581586
3.

Measuring Mutation Rates Using the Luria-Delbrück Fluctuation Assay.

Lang GI.

Methods Mol Biol. 2018;1672:21-31. doi: 10.1007/978-1-4939-7306-4_3.

PMID:
29043614
4.

Hitchhiking and epistasis give rise to cohort dynamics in adapting populations.

Buskirk SW, Peace RE, Lang GI.

Proc Natl Acad Sci U S A. 2017 Jul 18. pii: 201702314. doi: 10.1073/pnas.1702314114. [Epub ahead of print]

5.

Experimental evolution in fungi: An untapped resource.

Fisher KJ, Lang GI.

Fungal Genet Biol. 2016 Sep;94:88-94. doi: 10.1016/j.fgb.2016.06.007. Epub 2016 Jun 30. Review.

PMID:
27375178
6.

Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations.

Frenkel EM, McDonald MJ, Van Dyken JD, Kosheleva K, Lang GI, Desai MM.

Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11306-11. doi: 10.1073/pnas.1506184112. Epub 2015 Aug 3.

7.

The spectrum of adaptive mutations in experimental evolution.

Lang GI, Desai MM.

Genomics. 2014 Dec;104(6 Pt A):412-6. doi: 10.1016/j.ygeno.2014.09.011. Epub 2014 Sep 28. Review.

8.

Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.

Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM.

Nature. 2013 Aug 29;500(7464):571-4. doi: 10.1038/nature12344. Epub 2013 Jul 21.

9.

Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast.

Lang GI, Parsons L, Gammie AE.

G3 (Bethesda). 2013 Sep 4;3(9):1453-65. doi: 10.1534/g3.113.006429.

10.

A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast.

Lang GI, Botstein D.

PLoS One. 2011;6(9):e25290. doi: 10.1371/journal.pone.0025290. Epub 2011 Sep 22.

11.

Mutation rates across budding yeast chromosome VI are correlated with replication timing.

Lang GI, Murray AW.

Genome Biol Evol. 2011;3:799-811. doi: 10.1093/gbe/evr054. Epub 2011 Jun 10.

12.

Genetic variation and the fate of beneficial mutations in asexual populations.

Lang GI, Botstein D, Desai MM.

Genetics. 2011 Jul;188(3):647-61. doi: 10.1534/genetics.111.128942. Epub 2011 May 5.

13.

The cost of gene expression underlies a fitness trade-off in yeast.

Lang GI, Murray AW, Botstein D.

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5755-60. doi: 10.1073/pnas.0901620106. Epub 2009 Mar 19.

14.

Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae.

Lang GI, Murray AW.

Genetics. 2008 Jan;178(1):67-82. doi: 10.1534/genetics.107.071506.

15.

DEG1, encoding the tRNA:pseudouridine synthase Pus3p, impacts HOT1-stimulated recombination in Saccharomyces cerevisiae.

Hepfer CE, Arnold-Croop S, Fogell H, Steudel KG, Moon M, Roff A, Zaikoski S, Rickman A, Komsisky K, Harbaugh DL, Lang GI, Keil RL.

Mol Genet Genomics. 2005 Dec;274(5):528-38. Epub 2005 Oct 18.

PMID:
16231152

Supplemental Content

Support Center