Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 75

1.

Targeting the Kynurenine Pathway for the Treatment of Cisplatin-Resistant Lung Cancer.

Nguyen DJM, Theodoropoulos G, Li YY, Wu C, Sha W, Feun LG, Lampidis TJ, Savaraj N, Wangpaichitr M.

Mol Cancer Res. 2019 Oct 18. doi: 10.1158/1541-7786.MCR-19-0239. [Epub ahead of print]

PMID:
31628200
2.

Combining 2-deoxy-D-glucose with fenofibrate leads to tumor cell death mediated by simultaneous induction of energy and ER stress.

Liu H, Kurtoglu M, León-Annicchiarico CL, Munoz-Pinedo C, Barredo J, Leclerc G, Merchan J, Liu X, Lampidis TJ.

Oncotarget. 2016 Jun 14;7(24):36461-36473. doi: 10.18632/oncotarget.9263.

3.

2-Deoxy-Glucose Downregulates Endothelial AKT and ERK via Interference with N-Linked Glycosylation, Induction of Endoplasmic Reticulum Stress, and GSK3β Activation.

Kovács K, Decatur C, Toro M, Pham DG, Liu H, Jing Y, Murray TG, Lampidis TJ, Merchan JR.

Mol Cancer Ther. 2016 Feb;15(2):264-75. doi: 10.1158/1535-7163.MCT-14-0315. Epub 2015 Dec 4.

4.

Mcl-1 downregulation leads to the heightened sensitivity exhibited by BCR-ABL positive ALL to induction of energy and ER-stress.

Leclerc GJ, DeSalvo J, Du J, Gao N, Leclerc GM, Lehrman MA, Lampidis TJ, Barredo JC.

Leuk Res. 2015 Aug 20. pii: S0145-2126(15)30360-X. doi: 10.1016/j.leukres.2015.08.007. [Epub ahead of print]

5.

ATF4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2-deoxyglucose in the same cells.

León-Annicchiarico CL, Ramírez-Peinado S, Domínguez-Villanueva D, Gonsberg A, Lampidis TJ, Muñoz-Pinedo C.

FEBS J. 2015 Sep;282(18):3647-58. doi: 10.1111/febs.13369. Epub 2015 Aug 1.

6.

The wonders of 2-deoxy-D-glucose.

Xi H, Kurtoglu M, Lampidis TJ.

IUBMB Life. 2014 Feb;66(2):110-21. doi: 10.1002/iub.1251. Epub 2014 Feb 27.

7.

Targeting cisplatin-resistant human tumor cells with metabolic inhibitors.

Sullivan EJ, Kurtoglu M, Brenneman R, Liu H, Lampidis TJ.

Cancer Chemother Pharmacol. 2014 Feb;73(2):417-27. doi: 10.1007/s00280-013-2366-8. Epub 2013 Dec 19.

PMID:
24352250
8.

Increased sensitivity to glucose starvation correlates with downregulation of glycogen phosphorylase isoform PYGB in tumor cell lines resistant to 2-deoxy-D-glucose.

Philips KB, Kurtoglu M, Leung HJ, Liu H, Gao N, Lehrman MA, Murray TG, Lampidis TJ.

Cancer Chemother Pharmacol. 2014 Feb;73(2):349-61. doi: 10.1007/s00280-013-2358-8. Epub 2013 Dec 1.

9.

Conversion of 2-deoxyglucose-induced growth inhibition to cell death in normoxic tumor cells.

Liu H, Kurtoglu M, Cao Y, Xi H, Kumar R, Axten JM, Lampidis TJ.

Cancer Chemother Pharmacol. 2013 Jul;72(1):251-62. doi: 10.1007/s00280-013-2193-y. Epub 2013 May 23.

PMID:
23700291
10.

Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKβ leading to autophagy.

Xi H, Barredo JC, Merchan JR, Lampidis TJ.

Biochem Pharmacol. 2013 May 15;85(10):1463-77. doi: 10.1016/j.bcp.2013.02.037. Epub 2013 Mar 13.

PMID:
23500541
11.

Models and discovery strategies for new therapies of retinoblastoma.

Houston SK, Lampidis TJ, Murray TG.

Expert Opin Drug Discov. 2013 Apr;8(4):383-94. doi: 10.1517/17460441.2013.772975. Epub 2013 Feb 22. Review.

PMID:
23427911
12.

A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors.

Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, Kroll S, Jung DT, Kurtoglu M, Rosenblatt J, Lampidis TJ.

Cancer Chemother Pharmacol. 2013 Feb;71(2):523-30. doi: 10.1007/s00280-012-2045-1. Epub 2012 Dec 11.

PMID:
23228990
13.

Activation of the unfolded protein response by 2-deoxy-D-glucose inhibits Kaposi's sarcoma-associated herpesvirus replication and gene expression.

Leung HJ, Duran EM, Kurtoglu M, Andreansky S, Lampidis TJ, Mesri EA.

Antimicrob Agents Chemother. 2012 Nov;56(11):5794-803. doi: 10.1128/AAC.01126-12. Epub 2012 Aug 27.

14.

Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LH(BETA)T(AG) retinal tumors.

Piña Y, Houston SK, Murray TG, Koru-Sengul T, Decatur C, Scott WK, Nathanson L, Clarke J, Lampidis TJ.

Clin Ophthalmol. 2012;6:817-30. doi: 10.2147/OPTH.S29688. Epub 2012 May 29.

15.

Inhibition of Akt potentiates 2-DG-induced apoptosis via downregulation of UPR in acute lymphoblastic leukemia.

DeSalvo J, Kuznetsov JN, Du J, Leclerc GM, Leclerc GJ, Lampidis TJ, Barredo JC.

Mol Cancer Res. 2012 Jul;10(7):969-78. doi: 10.1158/1541-7786.MCR-12-0125. Epub 2012 Jun 12.

16.

The relationship of thioredoxin-1 and cisplatin resistance: its impact on ROS and oxidative metabolism in lung cancer cells.

Wangpaichitr M, Sullivan EJ, Theodoropoulos G, Wu C, You M, Feun LG, Lampidis TJ, Kuo MT, Savaraj N.

Mol Cancer Ther. 2012 Mar;11(3):604-15. doi: 10.1158/1535-7163.MCT-11-0599. Epub 2012 Jan 16.

17.

Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LH(BETA)T(AG) retinoblastoma tumors.

Houston SK, Piña Y, Murray TG, Boutrid H, Cebulla C, Schefler AC, Shi W, Celdran M, Feuer W, Merchan J, Lampidis TJ.

Clin Ophthalmol. 2011 Jan 27;5:129-37. doi: 10.2147/OPTH.S15179.

18.

Antiangiogenic activity of 2-deoxy-D-glucose.

Merchan JR, Kovács K, Railsback JW, Kurtoglu M, Jing Y, Piña Y, Gao N, Murray TG, Lehrman MA, Lampidis TJ.

PLoS One. 2010 Oct 27;5(10):e13699. doi: 10.1371/journal.pone.0013699.

19.

Focal, periocular delivery of 2-deoxy-D-glucose as adjuvant to chemotherapy for treatment of advanced retinoblastoma.

Piña Y, Houston SK, Murray TG, Boutrid H, Celdran M, Feuer W, Shi W, Hernandez E, Lampidis TJ.

Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6149-56. doi: 10.1167/iovs.09-5033. Epub 2010 Aug 11.

20.

2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion.

Xi H, Kurtoglu M, Liu H, Wangpaichitr M, You M, Liu X, Savaraj N, Lampidis TJ.

Cancer Chemother Pharmacol. 2011 Apr;67(4):899-910. doi: 10.1007/s00280-010-1391-0. Epub 2010 Jul 1.

21.

High endoplasmic reticulum activity renders multiple myeloma cells hypersensitive to mitochondrial inhibitors.

Kurtoglu M, Philips K, Liu H, Boise LH, Lampidis TJ.

Cancer Chemother Pharmacol. 2010 May;66(1):129-40. doi: 10.1007/s00280-009-1143-1. Epub 2009 Sep 25.

22.

Increased hypoxia following vessel targeting in a murine model of retinoblastoma.

Boutrid H, Piña Y, Cebulla CM, Feuer WJ, Lampidis TJ, Jockovich ME, Murray TG.

Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5537-43. doi: 10.1167/iovs.09-3702. Epub 2009 Jul 2.

PMID:
19578014
23.
24.

Intrinsically lower AKT, mammalian target of rapamycin, and hypoxia-inducible factor activity correlates with increased sensitivity to 2-deoxy-D-glucose under hypoxia in lung cancer cell lines.

Wangpaichitr M, Savaraj N, Maher J, Kurtoglu M, Lampidis TJ.

Mol Cancer Ther. 2008 Jun;7(6):1506-13. doi: 10.1158/1535-7163.MCT-07-2334.

25.
26.

Targeting hypoxia, a novel treatment for advanced retinoblastoma.

Boutrid H, Jockovich ME, Murray TG, Piña Y, Feuer WJ, Lampidis TJ, Cebulla CM.

Invest Ophthalmol Vis Sci. 2008 Jul;49(7):2799-805. doi: 10.1167/iovs.08-1751. Epub 2008 Mar 7.

PMID:
18326690
27.

Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation.

Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, Savaraj N, Lane AN, Lampidis TJ.

Mol Cancer Ther. 2007 Nov;6(11):3049-58.

28.

Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells.

Kurtoglu M, Maher JC, Lampidis TJ.

Antioxid Redox Signal. 2007 Sep;9(9):1383-90. Review.

PMID:
17627467
29.

Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose.

Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M, Lampidis TJ.

Mol Cancer Ther. 2007 Feb;6(2):732-41.

30.

Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells".

Lampidis TJ, Kurtoglu M, Maher JC, Liu H, Krishan A, Sheft V, Szymanski S, Fokt I, Rudnicki WR, Ginalski K, Lesyng B, Priebe W.

Cancer Chemother Pharmacol. 2006 Dec;58(6):725-34. Epub 2006 Mar 23.

PMID:
16555088
31.

Differential sensitivity to 2-deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1 expression.

Maher JC, Savaraj N, Priebe W, Liu H, Lampidis TJ.

Pancreas. 2005 Mar;30(2):e34-9.

PMID:
15714127
32.

2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo.

Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ.

Cancer Res. 2004 Jan 1;64(1):31-4.

33.

Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions.

Maher JC, Krishan A, Lampidis TJ.

Cancer Chemother Pharmacol. 2004 Feb;53(2):116-22. Epub 2003 Nov 7.

PMID:
14605866
34.
35.

Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C).

Liu H, Savaraj N, Priebe W, Lampidis TJ.

Biochem Pharmacol. 2002 Dec 15;64(12):1745-51.

PMID:
12445863
36.

Hypersensitization of tumor cells to glycolytic inhibitors.

Liu H, Hu YP, Savaraj N, Priebe W, Lampidis TJ.

Biochemistry. 2001 May 8;40(18):5542-7.

PMID:
11331019
37.

Rho(0) tumor cells: a model for studying whether mitochondria are targets for rhodamine 123, doxorubicin, and other drugs.

Hu Y, Moraes CT, Savaraj N, Priebe W, Lampidis TJ.

Biochem Pharmacol. 2000 Dec 15;60(12):1897-905.

PMID:
11108806
38.

Comparison of annamycin to adriamycin in cardiac and MDR tumor cell systems.

Kolonias D, Podona T, Savaraj N, Gate L, Cossum P, Lampidis TJ.

Anticancer Res. 1999 Mar-Apr;19(2A):1277-83.

PMID:
10368688
39.

Structurally different anthracyclines provoke different effects on cell cycle and tumor B cell differentiation.

Teillaud JL, Gruel N, Moncuit J, Mishal Z, Fridman WH, Lampidis TJ, Tapiero H.

Biomed Pharmacother. 1998;52(6):282-90.

PMID:
9755828
40.

Phenotypic diversity in human fibroblasts from myelometaplasic and non-myelometaplasic hematopoietic tissues.

Brouty-Boyé D, Doucet C, Clay D, Le Bousse-Kerdiles MC, Lampidis TJ, Azzarone B.

Int J Cancer. 1998 May 29;76(5):767-73.

41.

Accumulation of simple organic cations correlates with differential cytotoxicity in multidrug-resistant and -sensitive human and rodent cells.

Lampidis TJ, Shi YF, Calderon CL, Kolonias D, Tapiero H, Savaraj N.

Leukemia. 1997 Jul;11(7):1156-9.

42.

Circumvention of P-GP MDR as a function of anthracycline lipophilicity and charge.

Lampidis TJ, Kolonias D, Podona T, Israel M, Safa AR, Lothstein L, Savaraj N, Tapiero H, Priebe W.

Biochemistry. 1997 Mar 4;36(9):2679-85.

PMID:
9054575
43.
44.

Antiproliferative activity of taxol on human tumor and normal breast cells vs. effects on cardiac cells.

Brouty-Boye D, Kolonias D, Lampidis TJ.

Int J Cancer. 1995 Feb 8;60(4):571-5.

PMID:
7829273
45.

Cross resistance relevance of the chemical structure of different anthracyclines in multidrug resistant cells.

Tapiero H, Nguyen-Ba G, Lampidis TJ.

Pathol Biol (Paris). 1994 Apr;42(4):328-37.

PMID:
7808786
46.

Two multidrug-resistant Friend leukemic cell lines selected with different drugs exhibit overproduction of different P-glycoproteins.

Savaraj N, Lampidis TJ, Zhao JY, Wu CJ, Teeter LD, Kuo MT.

Cancer Invest. 1994;12(2):138-44.

PMID:
7907527
47.

Cytotoxic and photodynamic effects of Photofrin on sensitive and multi-drug-resistant Friend leukaemia cells.

Dellinger M, Moreno G, Salet C, Tapiero H, Lampidis TJ.

Int J Radiat Biol. 1992 Dec;62(6):735-41.

PMID:
1362767
48.

Structural requirements of simple organic cations for recognition by multidrug-resistant cells.

Dellinger M, Pressman BC, Calderon-Higginson C, Savaraj N, Tapiero H, Kolonias D, Lampidis TJ.

Cancer Res. 1992 Nov 15;52(22):6385-9.

49.

Alpha-smooth muscle actin expression in cultured cardiac fibroblasts of newborn rat.

Brouty-Boye D, Kolonias D, Savaraj N, Lampidis TJ.

In Vitro Cell Dev Biol. 1992 Apr;28A(4):293-6.

PMID:
1583007
50.

Cardiostimulatory and antiarrhythmic activity of tubulin-binding agents.

Lampidis TJ, Kolonias D, Savaraj N, Rubin RW.

Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1256-60.

Supplemental Content

Loading ...
Support Center