Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Labéta MO[au]:

Search results

Items: 33

1.

Preventing Peritoneal Dialysis-Associated Fibrosis by Therapeutic Blunting of Peritoneal Toll-Like Receptor Activity.

Raby AC, Labéta MO.

Front Physiol. 2018 Nov 27;9:1692. doi: 10.3389/fphys.2018.01692. eCollection 2018. Review.

2.

Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution-induced fibrosis.

Raby AC, González-Mateo GT, Williams A, Topley N, Fraser D, López-Cabrera M, Labéta MO.

Kidney Int. 2018 Aug;94(2):346-362. doi: 10.1016/j.kint.2018.03.014. Epub 2018 May 31.

PMID:
29861057
3.

Soluble Toll-like receptor 2 is a biomarker for sepsis in critically ill patients with multi-organ failure within 12 h of ICU admission.

Holst B, Szakmany T, Raby AC, Hamlyn V, Durno K, Hall JE, Labéta MO.

Intensive Care Med Exp. 2017 Dec;5(1):2. doi: 10.1186/s40635-016-0116-z. Epub 2017 Jan 13.

4.

Toll-Like Receptors 2 and 4 Are Potential Therapeutic Targets in Peritoneal Dialysis-Associated Fibrosis.

Raby AC, Colmont CS, Kift-Morgan A, Köhl J, Eberl M, Fraser D, Topley N, Labéta MO.

J Am Soc Nephrol. 2017 Feb;28(2):461-478. doi: 10.1681/ASN.2015080923. Epub 2016 Jul 18.

5.

Therapeutic Boosting of the Immune Response: Turning to CD14 for Help.

Raby AC, Labéta MO.

Curr Pharm Biotechnol. 2016;17(5):414-8. Review.

6.

Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens.

Raby AC, Holst B, Le Bouder E, Diaz C, Ferran E, Conraux L, Guillemot JC, Coles B, Kift-Morgan A, Colmont CS, Szakmany T, Ferrara P, Hall JE, Topley N, Labéta MO.

Sci Transl Med. 2013 May 15;5(185):185ra64. doi: 10.1126/scitranslmed.3005544.

7.

Complement takes its Toll: an inflammatory crosstalk between Toll-like receptors and the receptors for the complement anaphylatoxin C5a.

Holst B, Raby AC, Hall JE, Labéta MO.

Anaesthesia. 2012 Jan;67(1):60-4. doi: 10.1111/j.1365-2044.2011.07011.x. Review.

8.

Human peritoneal mesothelial cells respond to bacterial ligands through a specific subset of Toll-like receptors.

Colmont CS, Raby AC, Dioszeghy V, Lebouder E, Foster TL, Jones SA, Labéta MO, Fielding CA, Topley N.

Nephrol Dial Transplant. 2011 Dec;26(12):4079-90. doi: 10.1093/ndt/gfr217. Epub 2011 Jun 1.

9.

TLR activation enhances C5a-induced pro-inflammatory responses by negatively modulating the second C5a receptor, C5L2.

Raby AC, Holst B, Davies J, Colmont C, Laumonnier Y, Coles B, Shah S, Hall J, Topley N, Köhl J, Morgan BP, Labéta MO.

Eur J Immunol. 2011 Sep;41(9):2741-52. doi: 10.1002/eji.201041350. Epub 2011 Aug 4.

10.

Soluble TLR2 reduces inflammation without compromising bacterial clearance by disrupting TLR2 triggering.

Raby AC, Le Bouder E, Colmont C, Davies J, Richards P, Coles B, George CH, Jones SA, Brennan P, Topley N, Labéta MO.

J Immunol. 2009 Jul 1;183(1):506-17. doi: 10.4049/jimmunol.0802909.

11.

Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

LeBouder E, Rey-Nores JE, Raby AC, Affolter M, Vidal K, Thornton CA, Labéta MO.

J Immunol. 2006 Mar 15;176(6):3742-52.

12.

Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk.

LeBouder E, Rey-Nores JE, Rushmere NK, Grigorov M, Lawn SD, Affolter M, Griffin GE, Ferrara P, Schiffrin EJ, Morgan BP, Labéta MO.

J Immunol. 2003 Dec 15;171(12):6680-9.

13.

Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells.

Vives-Pi M, Somoza N, Fernández-Alvarez J, Vargas F, Caro P, Alba A, Gomis R, Labeta MO, Pujol-Borrell R.

Clin Exp Immunol. 2003 Aug;133(2):208-18.

14.

The lipopolysaccharide co-receptor CD14 is present and functional in seminal plasma and expressed on spermatozoa.

Harris CL, Vigar MA, Rey Nores JE, Horejsi V, Labeta MO, Morgan BP.

Immunology. 2001 Nov;104(3):317-23.

15.

Soluble CD14 in human breast milk and its role in innate immune responses.

Vidal K, Labéta MO, Schiffrin EJ, Donnet-Hughes A.

Acta Odontol Scand. 2001 Oct;59(5):330-4.

PMID:
11680654
16.
17.

Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14.

Labéta MO, Vidal K, Nores JE, Arias M, Vita N, Morgan BP, Guillemot JC, Loyaux D, Ferrara P, Schmid D, Affolter M, Borysiewicz LK, Donnet-Hughes A, Schiffrin EJ.

J Exp Med. 2000 May 15;191(10):1807-12.

18.

Cutting edge: human B cell function is regulated by interaction with soluble CD14: opposite effects on IgG1 and IgE production.

Arias MA, Rey Nores JE, Vita N, Stelter F, Borysiewicz LK, Ferrara P, Labéta MO.

J Immunol. 2000 Apr 1;164(7):3480-6.

19.

Soluble CD14 acts as a negative regulator of human T cell activation and function.

Rey Nores JE, Bensussan A, Vita N, Stelter F, Arias MA, Jones M, Lefort S, Borysiewicz LK, Ferrara P, Labéta MO.

Eur J Immunol. 1999 Jan;29(1):265-76.

20.

Detection and biochemical characteristics of the receptor for complexes of soluble CD14 and bacterial lipopolysaccharide.

Vita N, Lefort S, Sozzani P, Reeb R, Richards S, Borysiewicz LK, Ferrara P, Labéta MO.

J Immunol. 1997 Apr 1;158(7):3457-62.

PMID:
9120307
21.

Prevention of experimental endotoxin shock by a monocyte activator.

Passlick B, Labeta MO, Izbicki JR, Ostertag P, Löffler T, Siebeck M, Pichlmeier U, Schweiberer L, Ziegler-Heitbrock HW.

Antimicrob Agents Chemother. 1995 Nov;39(11):2535-40.

22.

The antibody MY4 recognizes CD14 on porcine monocytes and macrophages.

Ziegler-Heitbrock HW, Appl B, Käfferlein E, Löffler T, Jahn-Henninger H, Gutensohn W, Nores JR, McCullough K, Passlick B, Labeta MO, et al.

Scand J Immunol. 1994 Nov;40(5):509-14.

PMID:
7526441
23.

CD14 is expressed and functional in human B cells.

Ziegler-Heitbrock HW, Pechumer H, Petersmann I, Durieux JJ, Vita N, Labeta MO, Ströbel M.

Eur J Immunol. 1994 Aug;24(8):1937-40.

PMID:
7520002
24.

CD14 and tolerance to lipopolysaccharide: biochemical and functional analysis.

Labeta MO, Durieux JJ, Spagnoli G, Fernandez N, Wijdenes J, Herrmann R.

Immunology. 1993 Nov;80(3):415-23.

25.

Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14.

Labeta MO, Durieux JJ, Fernandez N, Herrmann R, Ferrara P.

Eur J Immunol. 1993 Sep;23(9):2144-51.

PMID:
7690322
27.

Human B cells express membrane-bound and soluble forms of the CD14 myeloid antigen.

Labeta MO, Landmann R, Obrecht JP, Obrist R.

Mol Immunol. 1991 Jan-Feb;28(1-2):115-22.

PMID:
1707133
28.

Biochemical analysis of a novel H-2 class I-like glycoprotein expressed in five AKR-(Gross virus) derived spontaneous T cell leukemias.

Labeta MO, Fernandez N, Reyes A, Ferrara P, Marelli O, Le Roy E, Houlihan J, Festenstein H.

J Immunol. 1989 Aug 15;143(4):1245-53.

PMID:
2473124
29.

Functional studies of H-2k-like epitopes on DTIC treated and untreated L1210 (H-2d) clones.

Marelli OE, Franco P, Labeta MO, Festenstein H.

J Immunogenet. 1989 Aug-Oct;16(4-5):373-80.

PMID:
2639909
30.

Solubilisation effect of Nonidet P-40, triton X-100 and CHAPS in the detection of MHC-like glycoproteins.

Labeta MO, Fernandez N, Festenstein H.

J Immunol Methods. 1988 Aug 9;112(1):133-8.

PMID:
3403985
31.

A novel HLA class II molecule.

Fernandez N, Labeta MO, Festenstein H.

Immunogenetics. 1988;27(5):363-9.

PMID:
3258581
32.
33.

Supplemental Content

Loading ...
Support Center