Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 58

1.

Nociceptive Pathway in the Cockroach Periplaneta americana.

Emanuel S, Libersat F.

Front Physiol. 2019 Aug 21;10:1100. doi: 10.3389/fphys.2019.01100. eCollection 2019.

2.

Parasite manipulation of host behavior.

Hughes DP, Libersat F.

Curr Biol. 2019 Jan 21;29(2):R45-R47. doi: 10.1016/j.cub.2018.12.001.

PMID:
30668944
3.

Molecular cross-talk in a unique parasitoid manipulation strategy.

Kaiser M, Arvidson R, Zarivach R, Adams ME, Libersat F.

Insect Biochem Mol Biol. 2019 Mar;106:64-78. doi: 10.1016/j.ibmb.2018.11.009. Epub 2018 Nov 30.

PMID:
30508629
4.

Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain.

Arvidson R, Kaiser M, Lee SS, Urenda JP, Dail C, Mohammed H, Nolan C, Pan S, Stajich JE, Libersat F, Adams ME.

Mol Cell Proteomics. 2019 Jan;18(1):99-114. doi: 10.1074/mcp.RA118.000908. Epub 2018 Oct 6.

5.

Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts.

Libersat F, Kaiser M, Emanuel S.

Front Psychol. 2018 May 1;9:572. doi: 10.3389/fpsyg.2018.00572. eCollection 2018.

6.

Neuroparasitology of Parasite-Insect Associations.

Hughes DP, Libersat F.

Annu Rev Entomol. 2018 Jan 7;63:471-487. doi: 10.1146/annurev-ento-020117-043234. Review.

PMID:
29324045
7.

Do Quiescence and Wasp Venom-Induced Lethargy Share Common Neuronal Mechanisms in Cockroaches?

Emanuel S, Libersat F.

PLoS One. 2017 Jan 3;12(1):e0168032. doi: 10.1371/journal.pone.0168032. eCollection 2017.

8.

The role of the cerebral ganglia in the venom-induced behavioral manipulation of cockroaches stung by the parasitoid jewel wasp.

Kaiser M, Libersat F.

J Exp Biol. 2015 Apr;218(Pt 7):1022-7. doi: 10.1242/jeb.116491. Epub 2015 Feb 16.

9.

Wasp voodoo rituals, venom-cocktails, and the zombification of cockroach hosts.

Libersat F, Gal R.

Integr Comp Biol. 2014 Jul;54(2):129-42. doi: 10.1093/icb/icu006. Epub 2014 Apr 4.

PMID:
24706086
10.

Sensory arsenal on the stinger of the parasitoid jewel wasp and its possible role in identifying cockroach brains.

Gal R, Kaiser M, Haspel G, Libersat F.

PLoS One. 2014 Feb 26;9(2):e89683. doi: 10.1371/journal.pone.0089683. eCollection 2014.

11.

What can parasitoid wasps teach us about decision-making in insects?

Libersat F, Gal R.

J Exp Biol. 2013 Jan 1;216(Pt 1):47-55. doi: 10.1242/jeb.073999. Review.

12.

Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups.

Ferrari DC, Mdzomba BJ, Dehorter N, Lopez C, Michel FJ, Libersat F, Hammond C.

Front Cell Neurosci. 2012 Mar 8;6:7. doi: 10.3389/fncel.2012.00007. eCollection 2012.

13.

Involvement of the opioid system in the hypokinetic state induced in cockroaches by a parasitoid wasp.

Gavra T, Libersat F.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Mar;197(3):279-91. doi: 10.1007/s00359-010-0610-9. Epub 2010 Nov 24.

PMID:
21107581
14.

On predatory wasps and zombie cockroaches: Investigations of "free will" and spontaneous behavior in insects.

Gal R, Libersat F.

Commun Integr Biol. 2010 Sep;3(5):458-61. doi: 10.4161/cib.3.5.12472.

15.
16.

Manipulation of host behavior by parasitic insects and insect parasites.

Libersat F, Delago A, Gal R.

Annu Rev Entomol. 2009;54:189-207. doi: 10.1146/annurev.ento.54.110807.090556. Review.

PMID:
19067631
17.

A parasitoid wasp manipulates the drive for walking of its cockroach prey.

Gal R, Libersat F.

Curr Biol. 2008 Jun 24;18(12):877-82. doi: 10.1016/j.cub.2008.04.076. Epub 2008 Jun 5.

18.
19.

New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia.

Gal R, Libersat F.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Sep;192(9):1003-20. Epub 2006 May 30.

PMID:
16733727
21.

Parasitoid wasp uses a venom cocktail injected into the brain to manipulate the behavior and metabolism of its cockroach prey.

Gal R, Rosenberg LA, Libersat F.

Arch Insect Biochem Physiol. 2005 Dec;60(4):198-208.

PMID:
16304619
22.

Wasp venom injected into the prey's brain modulates thoracic identified monoaminergic neurons.

Rosenberg LA, Pflüger HJ, Wegener G, Libersat F.

J Neurobiol. 2006 Feb 5;66(2):155-68.

23.
24.

Olfactory learning-induced morphological modifications in single dendritic spines of young rats.

Knafo S, Libersat F, Barkai E.

Eur J Neurosci. 2005 Apr;21(8):2217-26.

PMID:
15869518
25.

Parasitoid wasp affects metabolism of cockroach host to favor food preservation for its offspring.

Haspel G, Gefen E, Ar A, Glusman JG, Libersat F.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jun;191(6):529-34. Epub 2005 Apr 29.

PMID:
15864597
26.

Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats.

Knafo S, Libersat F, Barkai E.

Eur J Neurosci. 2005 Feb;21(4):927-35.

PMID:
15787699
27.

Dynamics of olfactory learning-induced up-regulation of L1 in the piriform cortex and hippocampus.

Knafo S, Barkai E, Libersat F, Sandi C, Venero C.

Eur J Neurosci. 2005 Jan;21(2):581-6.

PMID:
15673458
28.

Olfactory learning-related NCAM expression is state, time, and location specific and is correlated with individual learning capabilities.

Knafo S, Barkai E, Herrero AI, Libersat F, Sandi C, Venero C.

Hippocampus. 2005;15(3):316-25.

PMID:
15490465
29.

Maturation of escape circuit function during the early adulthood of cockroaches Periplaneta americana.

Libersat F, Leung V, Mizrahi A, Mathenia N, Comer C.

J Neurobiol. 2005 Jan;62(1):62-71.

30.

Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons.

Knafo S, Ariav G, Barkai E, Libersat F.

Hippocampus. 2004;14(7):819-25.

PMID:
15382252
31.
32.

Mechanisms of dendritic maturation.

Libersat F, Duch C.

Mol Neurobiol. 2004 Jun;29(3):303-20. Review.

PMID:
15181241
33.

Venom effects on monoaminergic systems.

Weisel-Eichler A, Libersat F.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Sep;190(9):683-90. Epub 2004 May 25. Review.

PMID:
15160282
34.

Channel-forming activity in the venom of the cockroach-hunting wasp, Ampulex compressa.

Gincel D, Haspel G, Libersat F.

Toxicon. 2004 May;43(6):721-7.

PMID:
15109893
35.

Wasp uses venom cocktail to manipulate the behavior of its cockroach prey.

Libersat F.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Jul;189(7):497-508. Epub 2003 Jun 27. Review.

PMID:
12898169
36.

Direct injection of venom by a predatory wasp into cockroach brain.

Haspel G, Rosenberg LA, Libersat F.

J Neurobiol. 2003 Sep 5;56(3):287-92.

37.
38.

Afferent input regulates the formation of distal dendritic branches.

Mizrahi A, Libersat F.

J Comp Neurol. 2002 Oct 7;452(1):1-10.

PMID:
12205705
39.
40.

Are monoaminergic systems involved in the lethargy induced by a parasitoid wasp in the cockroach prey?

Weisel-Eichler A, Libersat F.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 May;188(4):315-24. Epub 2002 Apr 11.

PMID:
12012102
41.
42.
43.

Comparative analysis of dendritic architecture of identified neurons using the Hausdorff distance metric.

Mizrahi A, Ben-Ner E, Katz MJ, Kedem K, Glusman JG, Libersat F.

J Comp Neurol. 2000 Jul 3;422(3):415-28.

PMID:
10861517
44.

Venom of a parasitoid wasp induces prolonged grooming in the cockroach

Weisel-Eichler A, Haspel G, Libersat F.

J Exp Biol. 1999 Apr;202 (Pt 8):957-64.

45.

Independent coding of wind direction in cockroach giant interneurons.

Mizrahi A, Libersat F.

J Neurophysiol. 1997 Nov;78(5):2655-61.

46.
47.

The dorsal giant interneurons mediate evasive behavior in flying cockroaches.

Libersat F.

J Exp Biol. 1994 Dec;197:405-11. No abstract available.

48.

Wind-evoked evasive responses in flying cockroaches.

Ganihar D, Libersat F, Wendler G, Cambi JM.

J Comp Physiol A. 1994 Jul;175(1):49-65.

PMID:
8083847
50.

Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae).

Libersat F, Hoy RR.

J Comp Physiol A. 1991 Oct;169(4):507-14.

PMID:
1779422

Supplemental Content

Loading ...
Support Center