Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 163

1.

Antifungal Activity of a Hydroethanolic Extract From Astronium urundeuva Leaves Against Candida albicans and Candida glabrata.

Bonifácio BV, Vila TVM, Masiero IF, da Silva PB, da Silva IC, de Oliveira Lopes É, Dos Santos Ramos MA, de Souza LP, Vilegas W, Pavan FR, Chorilli M, Lopez-Ribot JL, Bauab TM.

Front Microbiol. 2019 Nov 15;10:2642. doi: 10.3389/fmicb.2019.02642. eCollection 2019.

2.

Protocol optimization for a fast, simple and economical chemical reduction synthesis of antimicrobial silver nanoparticles in non-specialized facilities.

Vazquez-Muñoz R, Arellano-Jimenez MJ, Lopez FD, Lopez-Ribot JL.

BMC Res Notes. 2019 Nov 27;12(1):773. doi: 10.1186/s13104-019-4813-z.

3.

Filamentation Is Associated with Reduced Pathogenicity of Multiple Non-albicans Candida Species.

Banerjee M, Lazzell AL, Romo JA, Lopez-Ribot JL, Kadosh D.

mSphere. 2019 Oct 16;4(5). pii: e00656-19. doi: 10.1128/mSphere.00656-19.

4.
5.

Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.

Romo JA, Zhang H, Cai H, Kadosh D, Koehler JR, Saville SP, Wang Y, Lopez-Ribot JL.

mSphere. 2019 Sep 11;4(5). pii: e00620-19. doi: 10.1128/mSphere.00620-19.

6.

Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii.

Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL.

MBio. 2019 Jun 18;10(3). pii: e01179-19. doi: 10.1128/mBio.01179-19.

7.

Candida albicans biofilm growth and dispersal: contributions to pathogenesis.

Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P.

Curr Opin Microbiol. 2019 May 11;52:1-6. doi: 10.1016/j.mib.2019.04.001. [Epub ahead of print] Review.

PMID:
31085405
8.

Nano-biofilm Arrays as a Novel Universal Platform for Microscale Microbial Culture and High-Throughput Downstream Applications.

Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL.

Curr Med Chem. 2019;26(14):2529-2535. doi: 10.2174/0929867326666190107155953. Review.

PMID:
30621556
9.

Antimicrobial and Antibiofilm Activity of Synergistic Combinations of a Commercially Available Small Compound Library With Colistin Against Pseudomonas aeruginosa.

Torres NS, Montelongo-Jauregui D, Abercrombie JJ, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Leung KP.

Front Microbiol. 2018 Oct 25;9:2541. doi: 10.3389/fmicb.2018.02541. eCollection 2018.

10.

Candida Interactions with the Oral Bacterial Microbiota.

Montelongo-Jauregui D, Lopez-Ribot JL.

J Fungi (Basel). 2018 Nov 3;4(4). pii: E122. doi: 10.3390/jof4040122. Review.

11.

Activity of anti-CR3-RP polyclonal antibody against biofilms formed by Candida auris, a multidrug-resistant emerging fungal pathogen.

Dekkerová J, Lopez-Ribot JL, Bujdáková H.

Eur J Clin Microbiol Infect Dis. 2019 Jan;38(1):101-108. doi: 10.1007/s10096-018-3400-x. Epub 2018 Oct 16.

PMID:
30327897
12.

Candida albicans Dispersed Cells Are Developmentally Distinct from Biofilm and Planktonic Cells.

Uppuluri P, Acosta Zaldívar M, Anderson MZ, Dunn MJ, Berman J, Lopez Ribot JL, Köhler JR.

MBio. 2018 Aug 21;9(4). pii: e01338-18. doi: 10.1128/mBio.01338-18.

13.

Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development.

Wall G, Chaturvedi AK, Wormley FL Jr, Wiederhold NP, Patterson HP, Patterson TF, Lopez-Ribot JL.

Antimicrob Agents Chemother. 2018 Sep 24;62(10). pii: e01084-18. doi: 10.1128/AAC.01084-18. Print 2018 Oct.

14.

Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence.

Liu NN, Uppuluri P, Broggi A, Besold A, Ryman K, Kambara H, Solis N, Lorenz V, Qi W, Acosta-Zaldívar M, Emami SN, Bao B, An D, Bonilla FA, Sola-Visner M, Filler SG, Luo HR, Engström Y, Ljungdahl PO, Culotta VC, Zanoni I, Lopez-Ribot JL, Köhler JR.

PLoS Pathog. 2018 Jul 30;14(7):e1007076. doi: 10.1371/journal.ppat.1007076. eCollection 2018 Jul.

15.

In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation.

Romo JA, Pierce CG, Esqueda M, Hung CY, Saville SP, Lopez-Ribot JL.

Front Cell Infect Microbiol. 2018 Jul 10;8:227. doi: 10.3389/fcimb.2018.00227. eCollection 2018.

16.

Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms.

Van Dijck P, Sjollema J, Cammue BP, Lagrou K, Berman J, d'Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NAR, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SAJ, Thevissen K.

Microb Cell. 2018 Jun 14;5(7):300-326. doi: 10.15698/mic2018.07.638. Review.

17.

An In Vitro Model for Candida albicans⁻Streptococcus gordonii Biofilms on Titanium Surfaces.

Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL.

J Fungi (Basel). 2018 Jun 4;4(2). pii: E66. doi: 10.3390/jof4020066.

18.

Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms.

Lara HH, Guisbiers G, Mendoza J, Mimun LC, Vincent BA, Lopez-Ribot JL, Nash KL.

Int J Nanomedicine. 2018 May 3;13:2697-2708. doi: 10.2147/IJN.S151285. eCollection 2018.

19.

Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation.

Romo JA, Pierce CG, Chaturvedi AK, Lazzell AL, McHardy SF, Saville SP, Lopez-Ribot JL.

MBio. 2017 Dec 5;8(6). pii: e01991-17. doi: 10.1128/mBio.01991-17.

20.

nBioChip, a Lab-on-a-Chip Platform of Mono- and Polymicrobial Biofilms for High-Throughput Downstream Applications.

Srinivasan A, Torres NS, Leung KP, Lopez-Ribot JL, Ramasubramanian AK.

mSphere. 2017 Jun 28;2(3). pii: e00247-17. doi: 10.1128/mSphere.00247-17. eCollection 2017 May-Jun.

21.

The Candida albicans Biofilm Matrix: Composition, Structure and Function.

Pierce CG, Vila T, Romo JA, Montelongo-Jauregui D, Wall G, Ramasubramanian A, Lopez-Ribot JL.

J Fungi (Basel). 2017 Mar;3(1). pii: 14. doi: 10.3390/jof3010014. Epub 2017 Mar 8.

22.

Screening the Pathogen Box for Identification of Candida albicans Biofilm Inhibitors.

Vila T, Lopez-Ribot JL.

Antimicrob Agents Chemother. 2016 Dec 27;61(1). pii: e02006-16. doi: 10.1128/AAC.02006-16. Print 2017 Jan.

23.

Screening a Commercial Library of Pharmacologically Active Small Molecules against Staphylococcus aureus Biofilms.

Torres NS, Abercrombie JJ, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Leung KP.

Antimicrob Agents Chemother. 2016 Sep 23;60(10):5663-72. doi: 10.1128/AAC.00377-16. Print 2016 Oct.

24.

Repurposing auranofin as an antifungal: In vitro activity against a variety of medically important fungi.

Wiederhold NP, Patterson TF, Srinivasan A, Chaturvedi AK, Fothergill AW, Wormley FL, Ramasubramanian AK, Lopez-Ribot JL.

Virulence. 2017 Feb 17;8(2):138-142. doi: 10.1080/21505594.2016.1196301. Epub 2016 Jun 7.

25.

Targeting Candida albicans filamentation for antifungal drug development.

Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL.

Virulence. 2017 Feb 17;8(2):150-158. doi: 10.1080/21505594.2016.1197444. Epub 2016 Jun 7. Review.

26.

An In Vitro Model for Oral Mixed Biofilms of Candida albicans and Streptococcus gordonii in Synthetic Saliva.

Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL.

Front Microbiol. 2016 May 12;7:686. doi: 10.3389/fmicb.2016.00686. eCollection 2016.

27.

Go Forth and Colonize: Dispersal from Clinically Important Microbial Biofilms.

Uppuluri P, Lopez-Ribot JL.

PLoS Pathog. 2016 Feb 18;12(2):e1005397. doi: 10.1371/journal.ppat.1005397. eCollection 2016 Feb. No abstract available.

28.

Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis.

Cleary IA, Reinhard SM, Lazzell AL, Monteagudo C, Thomas DP, Lopez-Ribot JL, Saville SP.

FEMS Yeast Res. 2016 Mar;16(2):fow011. doi: 10.1093/femsyr/fow011. Epub 2016 Feb 5.

29.

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles.

Romero-Urbina DG, Lara HH, Velázquez-Salazar JJ, Arellano-Jiménez MJ, Larios E, Srinivasan A, Lopez-Ribot JL, Yacamán MJ.

Beilstein J Nanotechnol. 2015 Dec 15;6:2396-405. doi: 10.3762/bjnano.6.246. eCollection 2015.

30.

A Novel Small Molecule Inhibitor of Candida albicans Biofilm Formation, Filamentation and Virulence with Low Potential for the Development of Resistance.

Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL.

NPJ Biofilms Microbiomes. 2015;1. pii: 15012. Epub 2015 Aug 12.

31.

Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study.

Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M.

J Nanobiotechnology. 2015 Dec 15;13:91. doi: 10.1186/s12951-015-0147-8.

32.

In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis.

Vila TV, Chaturvedi AK, Rozental S, Lopez-Ribot JL.

Antimicrob Agents Chemother. 2015 Dec;59(12):7611-20. doi: 10.1128/AAC.01890-15. Epub 2015 Sep 28.

33.

Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability.

Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL.

J Mater Sci Mater Med. 2015 Jul;26(7):215. doi: 10.1007/s10856-015-5538-8. Epub 2015 Jul 21.

PMID:
26194976
34.

From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms.

Pierce CG, Srinivasan A, Ramasubramanian AK, López-Ribot JL.

Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MB-0007-2014.

35.

Microscale microbial culture.

Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK.

Future Microbiol. 2015;10(2):143-6. doi: 10.2217/fmb.14.129. No abstract available.

36.

Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans.

Albataineh MT, Lazzell A, Lopez-Ribot JL, Kadosh D.

Eukaryot Cell. 2014 Dec;13(12):1538-47. doi: 10.1128/EC.00199-14. Epub 2014 Oct 17.

37.
38.

Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

Chaturvedi AK, Hameed RS, Wozniak KL, Hole CR, Leopold Wager CM, Weintraub ST, Lopez-Ribot JL, Wormley FL Jr.

PLoS One. 2014 Aug 13;9(8):e104316. doi: 10.1371/journal.pone.0104316. eCollection 2014.

39.

Overcoming antifungal resistance.

Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK.

Drug Discov Today Technol. 2014 Mar;11:65-71. doi: 10.1016/j.ddtec.2014.02.005. Review.

40.

High-content phenotypic screenings to identify inhibitors of Candida albicans biofilm formation and filamentation.

Pierce CG, Saville SP, Lopez-Ribot JL.

Pathog Dis. 2014 Apr;70(3):423-31. doi: 10.1111/2049-632X.12161. Epub 2014 Mar 11.

41.

Candida albicans: adapting to succeed.

Kadosh D, Lopez-Ribot JL.

Cell Host Microbe. 2013 Nov 13;14(5):483-5. doi: 10.1016/j.chom.2013.10.016.

42.

In vitro study of sequential fluconazole and caspofungin treatment against Candida albicans biofilms.

Sarkar S, Uppuluri P, Pierce CG, Lopez-Ribot JL.

Antimicrob Agents Chemother. 2014;58(2):1183-6. doi: 10.1128/AAC.01745-13. Epub 2013 Nov 11.

43.

Identification and characterization of Cryptococcus neoformans protein fractions that induce protective immune responses.

Chaturvedi AK, Weintraub ST, Lopez-Ribot JL, Wormley FL Jr.

Proteomics. 2013 Dec;13(23-24):3429-41. doi: 10.1002/pmic.201300213.

44.

Drug susceptibility of matrix-encapsulated Candida albicans nano-biofilms.

Srinivasan A, Gupta CM, Agrawal CM, Leung KP, Lopez-Ribot JL, Ramasubramanian AK.

Biotechnol Bioeng. 2014 Feb;111(2):418-24. doi: 10.1002/bit.25120. Epub 2013 Oct 18.

45.

Antifungal therapy with an emphasis on biofilms.

Pierce CG, Srinivasan A, Uppuluri P, Ramasubramanian AK, López-Ribot JL.

Curr Opin Pharmacol. 2013 Oct;13(5):726-30. doi: 10.1016/j.coph.2013.08.008. Epub 2013 Sep 4. Review.

46.

High-throughput nano-biofilm microarray for antifungal drug discovery.

Srinivasan A, Leung KP, Lopez-Ribot JL, Ramasubramanian AK.

MBio. 2013 Jun 25;4(4). pii: e00331-13. doi: 10.1128/mBio.00331-13.

47.

Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs.

Pierce CG, Lopez-Ribot JL.

Expert Opin Drug Discov. 2013 Sep;8(9):1117-26. doi: 10.1517/17460441.2013.807245. Epub 2013 Jun 6. Review.

48.

High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors.

Siles SA, Srinivasan A, Pierce CG, Lopez-Ribot JL, Ramasubramanian AK.

Antimicrob Agents Chemother. 2013 Aug;57(8):3681-7. doi: 10.1128/AAC.00680-13. Epub 2013 May 20.

49.

Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms.

Banerjee M, Uppuluri P, Zhao XR, Carlisle PL, Vipulanandan G, Villar CC, López-Ribot JL, Kadosh D.

Eukaryot Cell. 2013 Feb;12(2):224-32. doi: 10.1128/EC.00163-12. Epub 2012 Dec 7.

50.

Physiologic expression of the Candida albicans pescadillo homolog is required for virulence in a murine model of hematogenously disseminated candidiasis.

Uppuluri P, Chaturvedi AK, Jani N, Pukkila-Worley R, Monteagudo C, Mylonakis E, Köhler JR, Lopez Ribot JL.

Eukaryot Cell. 2012 Dec;11(12):1552-6. doi: 10.1128/EC.00171-12. Epub 2012 Oct 26.

Supplemental Content

Loading ...
Support Center