Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals.

Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A.

Int J Mol Med. 2018 Sep;42(3):1484-1494. doi: 10.3892/ijmm.2018.3714. Epub 2018 Jun 4.

2.

Cell-cell interactions between monocytes/macrophages and synoviocyte-like cells promote inflammatory cell infiltration mediated by augmentation of MCP-1 production in temporomandibular joint.

Ibi M, Horie S, Kyakumoto S, Chosa N, Yoshida M, Kamo M, Ohtsuka M, Ishisaki A.

Biosci Rep. 2018 Mar 29;38(2). pii: BSR20171217. doi: 10.1042/BSR20171217. Print 2018 Apr 27.

3.

Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells.

Nemoto A, Chosa N, Kyakumoto S, Yokota S, Kamo M, Noda M, Ishisaki A.

Mol Med Rep. 2018 Mar;17(3):3448-3454. doi: 10.3892/mmr.2017.8287. Epub 2017 Dec 18.

4.

Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

Takizawa N, Okubo N, Kamo M, Chosa N, Mikami T, Suzuki K, Yokota S, Ibi M, Ohtsuka M, Taira M, Yaegashi T, Ishisaki A, Kyakumoto S.

Exp Cell Res. 2017 Sep 15;358(2):411-420. doi: 10.1016/j.yexcr.2017.07.014. Epub 2017 Jul 14.

5.

ROCK/actin/MRTF signaling promotes the fibrogenic phenotype of fibroblast-like synoviocytes derived from the temporomandibular joint.

Yokota S, Chosa N, Kyakumoto S, Kimura H, Ibi M, Kamo M, Satoh K, Ishisaki A.

Int J Mol Med. 2017 Apr;39(4):799-808. doi: 10.3892/ijmm.2017.2896. Epub 2017 Feb 17.

6.

Transforming growth factor-β1 suppresses bone morphogenetic protein-2-induced mesenchymal-epithelial transition in HSC-4 human oral squamous cell carcinoma cells via Smad1/5/9 pathway suppression.

Chiba T, Ishisaki A, Kyakumoto S, Shibata T, Yamada H, Kamo M.

Oncol Rep. 2017 Feb;37(2):713-720. doi: 10.3892/or.2016.5338. Epub 2016 Dec 28.

7.

Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts.

Komatsu Y, Ibi M, Chosa N, Kyakumoto S, Kamo M, Shibata T, Sugiyama Y, Ishisaki A.

Int J Mol Med. 2016 Jul;38(1):139-47. doi: 10.3892/ijmm.2016.2582. Epub 2016 May 10.

8.

Transforming growth factor-β1 induces invasion ability of HSC-4 human oral squamous cell carcinoma cells through the Slug/Wnt-5b/MMP-10 signalling axis.

Hino M, Kamo M, Saito D, Kyakumoto S, Shibata T, Mizuki H, Ishisaki A.

J Biochem. 2016 Jun;159(6):631-40. doi: 10.1093/jb/mvw007. Epub 2016 Feb 8.

9.

EGF positively regulates the proliferation and migration, and negatively regulates the myofibroblast differentiation of periodontal ligament-derived endothelial progenitor cells through MEK/ERK- and JNK-dependent signals.

Kimura H, Okubo N, Chosa N, Kyakumoto S, Kamo M, Miura H, Ishisaki A.

Cell Physiol Biochem. 2013;32(4):899-914. doi: 10.1159/000354493. Epub 2013 Sep 27.

10.

Transforming growth factor-β1 induces epithelial-mesenchymal transition and integrin α3β1-mediated cell migration of HSC-4 human squamous cell carcinoma cells through Slug.

Saito D, Kyakumoto S, Chosa N, Ibi M, Takahashi N, Okubo N, Sawada S, Ishisaki A, Kamo M.

J Biochem. 2013 Mar;153(3):303-15. doi: 10.1093/jb/mvs144. Epub 2012 Dec 17.

PMID:
23248240
11.

TGF-β-operated growth inhibition and translineage commitment into smooth muscle cells of periodontal ligament-derived endothelial progenitor cells through Smad- and p38 MAPK-dependent signals.

Yoshida M, Okubo N, Chosa N, Hasegawa T, Ibi M, Kamo M, Kyakumoto S, Ishisaki A.

Int J Biol Sci. 2012;8(7):1062-74. doi: 10.7150/ijbs.4488. Epub 2012 Aug 22.

12.

Fibroblast growth factor-1-induced ERK1/2 signaling reciprocally regulates proliferation and smooth muscle cell differentiation of ligament-derived endothelial progenitor cell-like cells.

Takahashi M, Okubo N, Chosa N, Takahashi N, Ibi M, Kamo M, Mizuki H, Ishisaki A, Kyakumoto S.

Int J Mol Med. 2012 Mar;29(3):357-64. doi: 10.3892/ijmm.2011.847. Epub 2011 Nov 22.

PMID:
22108586
13.

Mechanism of Fas-mediated cell death and its enhancement by TNF-alpha in human salivary gland adenocarcinoma cell line HSG.

Chosa N, Kyakumoto S, Kito N, Kamo M, Sato N.

Eur J Oral Sci. 2004 Aug;112(4):338-46.

PMID:
15279653
15.
16.
17.

Isoform-specific monoclonal antibodies against HSP90.

Nemoto T, Roi R, Matsusaka T, Iwanari H, Yamashita H, Kyakumoto S, Sato N.

Biochem Mol Biol Int. 1997 Aug;42(5):881-9.

PMID:
9285055
18.

Expression of retinoid X receptors and COUP-TFI in a human salivary gland adenocarcinoma cell line.

Kyakumoto S, Nemoto T, Sato N, Ota M.

Biochem Cell Biol. 1997;75(6):749-58.

PMID:
9599664
19.

Retinoic acid enhances expression of bone morphogenetic protein-2 in human adenocarcinoma cell line (HSG-S8).

Hatakeyama S, Ohara-Nemoto Y, Kyakumoto S, Satoh M.

Biochem Mol Biol Int. 1996 May;38(6):1235-43.

PMID:
8739045
20.

[Proliferation and differentiation of human salivary gland adenocarcinoma cell line HSG].

Ota M, Kyakumoto S, Sato N.

Hum Cell. 1996 Mar;9(1):79-88. Japanese.

PMID:
9183635
21.

Proliferative signal transduction by epidermal growth factor (EGF) in the human salivary gland adenocarcinoma (HSG) cell line.

Sato N, Kyakumoto S, Sawano K, Ota M.

Biochem Mol Biol Int. 1996 Mar;38(3):597-606.

PMID:
8829620
23.

Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers.

Kurokawa R, Yu VC, Näär A, Kyakumoto S, Han Z, Silverman S, Rosenfeld MG, Glass CK.

Genes Dev. 1993 Jul;7(7B):1423-35.

24.

Expression of bone morphogenetic protein in human adenocarcinoma cell line.

Hatakeyama S, Ohara-Nemoto Y, Kyakumoto S, Satoh M.

Biochem Biophys Res Commun. 1993 Feb 15;190(3):695-701.

PMID:
8439320
25.
26.

Effect of glucocorticoid on epidermal growth factor receptor in human salivary gland adenocarcinoma cell line HSG.

Kyakumoto S, Kurokawa R, Ota M.

Biochim Biophys Acta. 1990 Jul 12;1053(2-3):204-12.

PMID:
2383597
27.
28.

Intranuclear androgen-receptor complex binding sites of mouse submandibular gland.

Sato N, Kyakumoto S, Tamura K, Ota M.

Shika Kiso Igakkai Zasshi. 1989 Aug;31(4):417-26.

PMID:
2519284
29.
30.

Intranuclear distribution of rat liver glucocorticoid receptors by nuclease digestion in a cell-free system.

Sato N, Kyakumoto S, Sawano K, Ota M.

Endocr Res. 1988-1989;14(4):243-62.

PMID:
3250866
31.

Mechanism of replenishment of androgen receptors in cytosol of mouse submandibular gland.

Kyakumoto S, Kurokawa R, Ota M.

J Endocrinol. 1987 Dec;115(3):411-8.

PMID:
3443804
32.

Subcellular distribution of glucocorticoid receptor in the neoplastic epithelial duct cell line from human salivary gland.

Kurokawa R, Kyakumoto S, Hatakeyama S, Ota M.

Biochem Int. 1987 Jan;14(1):37-44.

PMID:
3566776
33.

Cytosol glucocorticoid receptor in the neoplastic epithelial duct cell line from human salivary gland (HSG).

Kurokawa R, Hatakeyama S, Kyakumoto S, Ota M.

Biochem Int. 1986 Oct;13(4):671-9.

PMID:
3801040
34.

Characteristics of cytosol androgen receptor in rat thymus.

Sato N, Kyakumoto S, Kurokawa R, Ota M.

Biochem Int. 1986 Jul;13(1):15-23.

PMID:
3489464
35.

Sex difference in the cytosolic and nuclear distribution of androgen receptor in mouse submandibular gland.

Kyakumoto S, Kurokawa R, Ohara-Nemoto Y, Ota M.

J Endocrinol. 1986 Feb;108(2):267-73.

PMID:
3485169
36.
37.

Characterization of nontransformed and transformed androgen receptor from rat submandibular gland.

Nemoto T, Ohara-Nemoto Y, Sato N, Kyakumoto S, Ota M.

Biochim Biophys Acta. 1985 May 8;839(3):249-57.

PMID:
3986220
38.

Demonstration and characterization of cytosol androgen receptor in rat exorbital lacrimal gland.

Ota M, Kyakumoto S, Nemoto T.

Biochem Int. 1985 Feb;10(2):129-35.

PMID:
3873241
39.

Interaction of hepatic chromatin with androgen-receptor complex.

Ota M, Sato N, Kyakumoto S.

Exp Clin Endocrinol. 1984 Oct;84(2):159-66.

PMID:
6543179
40.

Binding of [3H]methyltrienolone to androgen receptor in rat liver.

Kyakumoto S, Sato N, Nemoto T, Ohara-Nemoto Y, Ota M.

Biochim Biophys Acta. 1984 Aug 21;800(3):214-9.

PMID:
6331850
41.

Activation of the rat liver androgen-receptor complex.

Kyakumoto S, Sato N, Nemoto T, Ohara-Nemoto Y, Ota M.

Biochem Biophys Res Commun. 1984 May 16;120(3):953-8.

PMID:
6732793
42.

Characterization of testosterone binding protein of rat liver cytosol.

Ota M, Kyakumoto S, Sato N, Ono S.

Endocrinol Jpn. 1983 Apr;30(2):139-46.

Supplemental Content

Loading ...
Support Center