Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Kont R, Kuusk P, Heering A, Sørlie M, Bissaro B, Eijsink VGH, Väljamäe P.

J Biol Chem. 2019 Feb 1;294(5):1516-1528. doi: 10.1074/jbc.RA118.006196. Epub 2018 Dec 4.

PMID:
30514757
2.

Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Väljamäe P.

J Biol Chem. 2018 Aug 3;293(31):12284. doi: 10.1074/jbc.AAC118.004796. No abstract available.

3.

Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Väljamäe P.

J Biol Chem. 2018 Jan 12;293(2):523-531. doi: 10.1074/jbc.M117.817593. Epub 2017 Nov 14. Erratum in: J Biol Chem. 2018 Aug 3;293(31):12284.

4.

Human Chitotriosidase Is an Endo-Processive Enzyme.

Kuusk S, Sørlie M, Väljamäe P.

PLoS One. 2017 Jan 27;12(1):e0171042. doi: 10.1371/journal.pone.0171042. eCollection 2017.

5.

When substrate inhibits and inhibitor activates: implications of β-glucosidases.

Kuusk S, Väljamäe P.

Biotechnol Biofuels. 2017 Jan 3;10:7. doi: 10.1186/s13068-016-0690-z. eCollection 2017.

6.

Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

Kurašin M, Kuusk S, Kuusk P, Sørlie M, Väljamäe P.

J Biol Chem. 2015 Nov 27;290(48):29074-85. doi: 10.1074/jbc.M115.684977. Epub 2015 Oct 14.

7.

An Open-Label, Multicenter, Evaluator-Blinded Study to Assess the Efficacy and Safety of a New Hyaluronic Acid-Based Gel Product for Lip Enhancement.

Samuelson U, Fagrell D, Wetter A, Kuusk S, Hamilton L, Haglund P.

Dermatol Surg. 2015 Sep;41(9):1052-9. doi: 10.1097/DSS.0000000000000432.

PMID:
26230331
8.

The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

Kuusk S, Sørlie M, Väljamäe P.

J Biol Chem. 2015 May 1;290(18):11678-91. doi: 10.1074/jbc.M114.635631. Epub 2015 Mar 12.

9.

The helicase CaHmi1p is required for wild-type mitochondrial DNA organization in Candida albicans.

Jõers P, Gerhold JM, Sedman T, Kuusk S, Sedman J.

FEMS Yeast Res. 2007 Jan;7(1):118-30.

10.

Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner.

Kuusk S, Sohlberg JJ, Magnus Eklund D, Sundberg E.

Plant J. 2006 Jul;47(1):99-111. Epub 2006 Jun 1.

11.

STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium.

Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E.

Plant J. 2006 Jul;47(1):112-23. Epub 2006 Jun 1.

12.

Hmi1p from Saccharomyces cerevisiae mitochondria is a structure-specific DNA helicase.

Kuusk S, Sedman T, Jõers P, Sedman J.

J Biol Chem. 2005 Jul 1;280(26):24322-9. Epub 2005 Apr 25.

13.

Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae.

Sedman T, Jõers P, Kuusk S, Sedman J.

Curr Genet. 2005 Apr;47(4):213-22. Epub 2005 Feb 3.

PMID:
15690159
14.

STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development.

Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E.

Development. 2002 Oct;129(20):4707-17.

15.

Recombinant yeast mtDNA helicases. Purification and functional assays.

Kuusk S, Sedman T, Sedman J.

Methods Mol Biol. 2002;197:303-16. No abstract available.

PMID:
12013806
16.

The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley.

Fridborg I, Kuusk S, Robertson M, Sundberg E.

Plant Physiol. 2001 Nov;127(3):937-48.

17.
18.

Supplemental Content

Support Center