Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

Analysis of novel hyperosmotic shock response suggests 'beads in liquid' cytosol structure.

Alexandrov AI, Grosfeld EV, Dergalev AA, Kushnirov VV, Chuprov-Netochin RN, Tyurin-Kuzmin PA, Kireev II, Ter-Avanesyan MD, Leonov SV, Agaphonov MO.

Biol Open. 2019 Jul 10;8(7). pii: bio044529. doi: 10.1242/bio.044529.

2.

Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants.

Dergalev AA, Alexandrov AI, Ivannikov RI, Ter-Avanesyan MD, Kushnirov VV.

Int J Mol Sci. 2019 May 29;20(11). pii: E2633. doi: 10.3390/ijms20112633.

3.

Michael Ter-Avanesyan (1949-2018) - life in science.

Kushnirov VV.

Prion. 2019 Jan;13(1):37-40. doi: 10.1080/19336896.2019.1567201.

4.

Wild type huntingtin toxicity in yeast: Implications for the role of amyloid cross-seeding in polyQ diseases.

Alexandrov AI, Serpionov GV, Kushnirov VV, Ter-Avanesyan MD.

Prion. 2016 May 3;10(3):221-7. doi: 10.1080/19336896.2016.1176659.

5.

The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation.

Alexandrov AI, Polyanskaya AB, Serpionov GV, Ter-Avanesyan MD, Kushnirov VV.

PLoS One. 2012;7(10):e46458. doi: 10.1371/journal.pone.0046458. Epub 2012 Oct 10.

6.

DNA aptamers detecting generic amyloid epitopes.

Mitkevich OV, Kochneva-Pervukhova NV, Surina ER, Benevolensky SV, Kushnirov VV, Ter-Avanesyan MD.

Prion. 2012 Sep-Oct;6(4):400-6. doi: 10.4161/pri.20678. Epub 2012 Aug 9.

7.

Interspecies transmission of prions.

Afanasieva EG, Kushnirov VV, Ter-Avanesyan MD.

Biochemistry (Mosc). 2011 Dec;76(13):1375-84. doi: 10.1134/S0006297911130013. Review.

8.

Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.

Afanasieva EG, Kushnirov VV, Tuite MF, Ter-Avanesyan MD.

J Biol Chem. 2011 May 6;286(18):15773-80. doi: 10.1074/jbc.M110.183889. Epub 2011 Mar 15.

9.

Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions.

Urakov VN, Vishnevskaya AB, Alexandrov IM, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD.

Prion. 2010 Jan-Mar;4(1):45-52. Epub 2010 Jan 18.

10.

Appearance and propagation of polyglutamine-based amyloids in yeast: tyrosine residues enable polymer fragmentation.

Alexandrov IM, Vishnevskaya AB, Ter-Avanesyan MD, Kushnirov VV.

J Biol Chem. 2008 May 30;283(22):15185-92. doi: 10.1074/jbc.M802071200. Epub 2008 Apr 1.

11.

Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein.

Kushnirov VV, Vishnevskaya AB, Alexandrov IM, Ter-Avanesyan MD.

Prion. 2007 Jul-Sep;1(3):179-84. Epub 2007 Jul 6. Review.

12.

[Neurodegenerative amyloidoses: the yeast model].

Vishnevskaia AB, Kushnirov VV, Ter-Avanesian MD.

Mol Biol (Mosk). 2007 Mar-Apr;41(2):346-54. Review. Russian.

PMID:
17514901
13.

Analysis of amyloid aggregates using agarose gel electrophoresis.

Bagriantsev SN, Kushnirov VV, Liebman SW.

Methods Enzymol. 2006;412:33-48. Review.

PMID:
17046650
14.

Purification and analysis of prion and amyloid aggregates.

Kushnirov VV, Alexandrov IM, Mitkevich OV, Shkundina IS, Ter-Avanesyan MD.

Methods. 2006 May;39(1):50-5.

PMID:
16774835
15.

The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants.

Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD.

Genetics. 2006 Feb;172(2):827-35. Epub 2005 Nov 4.

16.

Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids.

Salnikova AB, Kryndushkin DS, Smirnov VN, Kushnirov VV, Ter-Avanesyan MD.

J Biol Chem. 2005 Mar 11;280(10):8808-12. Epub 2004 Dec 23.

17.

[Yeast as a model for studying the prion and amyloid occurrence].

Kryndushkin DS, Aleksandrov IM, Kushnirov VV, Ter-Avanesian MD.

Ross Fiziol Zh Im I M Sechenova. 2004 May;90(5):645-57. Review. Russian.

PMID:
15341089
18.

Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104.

Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV.

J Biol Chem. 2003 Dec 5;278(49):49636-43. Epub 2003 Sep 24.

19.

Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation.

Valouev IA, Kushnirov VV, Ter-Avanesyan MD.

Cell Motil Cytoskeleton. 2002 Jul;52(3):161-73.

PMID:
12112144
20.

Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions.

Kryndushkin DS, Smirnov VN, Ter-Avanesyan MD, Kushnirov VV.

J Biol Chem. 2002 Jun 28;277(26):23702-8. Epub 2002 Mar 28.

21.

Itt1p, a novel protein inhibiting translation termination in Saccharomyces cerevisiae.

Urakov VN, Valouev IA, Lewitin EI, Paushkin SV, Kosorukov VS, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD.

BMC Mol Biol. 2001;2:9. Epub 2001 Aug 24.

22.

Ssb1 chaperone is a [PSI+] prion-curing factor.

Chacinska A, Szczesniak B, Kochneva-Pervukhova NV, Kushnirov VV, Ter-Avanesyan MD, Boguta M.

Curr Genet. 2001 Apr;39(2):62-7.

PMID:
11405097
23.

[Psi(+)] prion generation in yeast: characterization of the 'strain' difference.

Kochneva-Pervukhova NV, Chechenova MB, Valouev IA, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD.

Yeast. 2001 Apr;18(6):489-97.

24.

Chaperones that cure yeast artificial [PSI+] and their prion-specific effects.

Kushnirov VV, Kryndushkin DS, Boguta M, Smirnov VN, Ter-Avanesyan MD.

Curr Biol. 2000 Nov 16;10(22):1443-6.

25.

Rapid and reliable protein extraction from yeast.

Kushnirov VV.

Yeast. 2000 Jun 30;16(9):857-60.

26.

Prion properties of the Sup35 protein of yeast Pichia methanolica.

Kushnirov VV, Kochneva-Pervukhova NV, Chechenova MB, Frolova NS, Ter-Avanesyan MD.

EMBO J. 2000 Feb 1;19(3):324-31.

27.

Prions: infectious proteins with genetic properties.

Ter-Avanesyan MD, Kushnirov VV.

Biochemistry (Mosc). 1999 Dec;64(12):1382-90. Review.

28.

Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein.

Kochneva-Pervukhova NV, Paushkin SV, Kushnirov VV, Cox BS, Tuite MF, Ter-Avanesyan MD.

EMBO J. 1998 Oct 1;17(19):5805-10.

29.

Structure and replication of yeast prions.

Kushnirov VV, Ter-Avanesyan MD.

Cell. 1998 Jul 10;94(1):13-6. Review. No abstract available.

30.

[Molecular mechanisms of "protein heredity": yeast prions].

Ter-Avanesian MD, Paushkin SV, Kushnirov VV, Kochneva-Pervukhova NV.

Mol Biol (Mosk). 1998 Jan-Feb;32(1):32-42. Review. Russian. No abstract available.

PMID:
9566249
31.

In vitro propagation of the prion-like state of yeast Sup35 protein.

Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD.

Science. 1997 Jul 18;277(5324):381-3.

32.

[Fusion of glutathione S-transferase with the N-terminus of yeast Sup35p protein inhibits its prion-like properties].

Dagkesamanskaia AR, Kushnirov VV, Paushkin SV, Ter-Avanesian MD.

Genetika. 1997 May;33(5):610-5. Russian.

PMID:
9273317
33.

A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae.

Stansfield I, Kushnirov VV, Jones KM, Tuite MF.

Eur J Biochem. 1997 May 1;245(3):557-63.

34.
35.

Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae.

Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW.

Genetics. 1996 Dec;144(4):1375-86.

36.
37.

The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae.

Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF.

EMBO J. 1995 Sep 1;14(17):4365-73.

38.

[Structure and functional similarity of yeast Sup35p and Ure2p proteins to mammalian prions].

Kushnirov VV, Ter-Avanesian MD, Smirnov VN.

Mol Biol (Mosk). 1995 Jul-Aug;29(4):750-5. Review. Russian.

PMID:
7476941
39.
40.

Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein.

Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN.

Mol Microbiol. 1993 Mar;7(5):683-92.

PMID:
8469113
41.

Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae.

Kushnirov VV, Ter-Avanesyan MD, Didichenko SA, Smirnov VN, Chernoff YO, Derkach IL, Novikova ON, Inge-Vechtomov SG, Neistat MA, Tolstorukov II.

Yeast. 1990 Nov-Dec;6(6):461-72.

PMID:
2080663
42.

[Deletion analysis of the SUP2 gene in Saccharomyces cerevisiae].

Kushnirov VV, Ter-Avanesian MD, Dagkesamanskaia AR, Chernov IuO, Inge-Vechtomov SG, Smirnov VN.

Mol Biol (Mosk). 1990 Jul-Aug;24(4):1037-41. Russian.

PMID:
2250671
43.

[Comparative analysis of the structure of SUP2 genes in Pichia pinus and Saccharomyces cerevisiae].

Kushnirov VV, Ter-Avanesian MD, Smirnov VN, Chernov IuO, Derkach IL, Novikova ON, Inge-Vechtomov SG, Neń≠stat MA, Tolstorukov II.

Mol Biol (Mosk). 1990 Jul-Aug;24(4):1024-36. Russian.

PMID:
2250670
44.

[Nucleotide sequence of cDNA fragment for human vinculin].

Ogryz'ko EP, Zhidkova NI, Kushnirov VV, Kirillova MV, Kotelianskiń≠ VE.

Dokl Akad Nauk SSSR. 1990;312(3):738-42. Russian. No abstract available.

PMID:
2121424
45.

Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae.

Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG.

Gene. 1988 Jun 15;66(1):45-54.

PMID:
3047009
46.

Localization of possible functional domains in sup2 gene product of the yeast Saccharomyces cerevisiae.

Kushnirov VV, Ter-Avanesyan MD, Surguchov AP, Smirnov VN, Inge-Vechtomov SG.

FEBS Lett. 1987 May 11;215(2):257-60.

Supplemental Content

Loading ...
Support Center