Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 65

1.

Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves.

Galles C, Prez GM, Penkov S, Boland S, Porta EOJ, Altabe SG, Labadie GR, Schmidt U, Knölker HJ, Kurzchalia TV, de Mendoza D.

Sci Rep. 2018 Apr 23;8(1):6398. doi: 10.1038/s41598-018-24925-8.

2.

Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding.

Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, Müller DJ.

Nat Commun. 2017 Nov 2;8(1):1266. doi: 10.1038/s41467-017-01147-6.

3.

Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans.

Boland S, Schmidt U, Zagoriy V, Sampaio JL, Fritsche RF, Czerwonka R, Lübken T, Reimann J, Penkov S, Knölker HJ, Kurzchalia TV.

Nat Chem Biol. 2017 Jun;13(6):647-654. doi: 10.1038/nchembio.2347. Epub 2017 Apr 3.

PMID:
28369040
4.

NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans.

Mylenko M, Boland S, Penkov S, Sampaio JL, Lombardot B, Vorkel D, Verbavatz JM, Kurzchalia TV.

PLoS One. 2016 Dec 1;11(12):e0167208. doi: 10.1371/journal.pone.0167208. eCollection 2016.

5.

The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast.

Erkut C, Gade VR, Laxman S, Kurzchalia TV.

Elife. 2016 Apr 19;5. pii: e13614. doi: 10.7554/eLife.13614.

6.

Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans.

Penkov S, Kaptan D, Erkut C, Sarov M, Mende F, Kurzchalia TV.

Nat Commun. 2015 Aug 20;6:8060. doi: 10.1038/ncomms9060.

PMID:
26290173
7.

The C. elegans dauer larva as a paradigm to study metabolic suppression and desiccation tolerance.

Erkut C, Kurzchalia TV.

Planta. 2015 Aug;242(2):389-96. doi: 10.1007/s00425-015-2300-x. Epub 2015 Apr 14. Review.

PMID:
25868548
8.

The role of phospholipid headgroup composition and trehalose in the desiccation tolerance of Caenorhabditis elegans.

Abusharkh SE, Erkut C, Oertel J, Kurzchalia TV, Fahmy K.

Langmuir. 2014 Nov 4;30(43):12897-906. doi: 10.1021/la502654j. Epub 2014 Oct 22.

PMID:
25290156
9.

Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival.

Toyoda Y, Erkut C, Pan-Montojo F, Boland S, Stewart MP, Müller DJ, Wurst W, Hyman AA, Kurzchalia TV.

Biol Open. 2014 Jul 25;3(8):777-84. doi: 10.1242/bio.20149399.

10.

A wax ester promotes collective host finding in the nematode Pristionchus pacificus.

Penkov S, Ogawa A, Schmidt U, Tate D, Zagoriy V, Boland S, Gruner M, Vorkel D, Verbavatz JM, Sommer RJ, Knölker HJ, Kurzchalia TV.

Nat Chem Biol. 2014 Apr;10(4):281-5. doi: 10.1038/nchembio.1460. Epub 2014 Mar 2.

PMID:
24584102
11.

Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation.

Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV.

PLoS One. 2013 Dec 4;8(12):e82473. doi: 10.1371/journal.pone.0082473. eCollection 2013.

12.

Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals.

Saini R, Boland S, Kataeva O, Schmidt AW, Kurzchalia TV, Knölker HJ.

Org Biomol Chem. 2012 Jun 7;10(21):4159-63. doi: 10.1039/c2ob25394a. Epub 2012 Mar 21.

PMID:
22434373
13.

How worms survive desiccation: Trehalose pro water.

Erkut C, Penkov S, Fahmy K, Kurzchalia TV.

Worm. 2012 Jan 1;1(1):61-5. doi: 10.4161/worm.19040.

14.

Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation.

Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz JM, Fahmy K, Kurzchalia TV.

Curr Biol. 2011 Aug 9;21(15):1331-6. doi: 10.1016/j.cub.2011.06.064. Epub 2011 Jul 21.

15.

Maradolipids: diacyltrehalose glycolipids specific to dauer larva in Caenorhabditis elegans.

Penkov S, Mende F, Zagoriy V, Erkut C, Martin R, Pässler U, Schuhmann K, Schwudke D, Gruner M, Mäntler J, Reichert-Müller T, Shevchenko A, Knölker HJ, Kurzchalia TV.

Angew Chem Int Ed Engl. 2010 Dec 3;49(49):9430-5. doi: 10.1002/anie.201004466. No abstract available.

PMID:
21053225
16.

Survival strategies of a sterol auxotroph.

Carvalho M, Schwudke D, Sampaio JL, Palm W, Riezman I, Dey G, Gupta GD, Mayor S, Riezman H, Shevchenko A, Kurzchalia TV, Eaton S.

Development. 2010 Nov;137(21):3675-85. doi: 10.1242/dev.044560.

17.

Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology.

Martin R, Entchev EV, Kurzchalia TV, Knölker HJ.

Org Biomol Chem. 2010 Feb 21;8(4):739-50. doi: 10.1039/b918488k. Epub 2009 Dec 3.

PMID:
20135027
18.

Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans.

Hannich JT, Entchev EV, Mende F, Boytchev H, Martin R, Zagoriy V, Theumer G, Riezman I, Riezman H, Knölker HJ, Kurzchalia TV.

Dev Cell. 2009 Jun;16(6):833-43. doi: 10.1016/j.devcel.2009.04.012.

19.

4Alpha-bromo-5alpha-cholestan-3beta-ol and nor-5alpha-cholestan-3beta-ol derivatives-stereoselective synthesis and hormonal activity in Caenorhabditis elegans.

Martin R, Saini R, Bauer I, Gruner M, Kataeva O, Zagoriy V, Entchev EV, Kurzchalia TV, Knölker HJ.

Org Biomol Chem. 2009 Jun 7;7(11):2303-9. doi: 10.1039/b904001c. Epub 2009 Apr 16.

PMID:
19462039
20.

Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo.

Benenati G, Penkov S, Müller-Reichert T, Entchev EV, Kurzchalia TV.

Mech Dev. 2009 May-Jun;126(5-6):382-93. doi: 10.1016/j.mod.2009.02.001. Epub 2009 Feb 11.

21.

Synthesis and biological activity of the (25R)-cholesten-26-oic acids--ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans.

Martin R, Schmidt AW, Theumer G, Krause T, Entchev EV, Kurzchalia TV, Knölker HJ.

Org Biomol Chem. 2009 Mar 7;7(5):909-20. doi: 10.1039/b817358c. Epub 2009 Jan 27.

PMID:
19225674
22.

Stereoselective synthesis of the hormonally active (25S)-delta7-dafachronic acid, (25S)-Delta4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid.

Martin R, Däbritz F, Entchev EV, Kurzchalia TV, Knölker HJ.

Org Biomol Chem. 2008 Dec 7;6(23):4293-5. doi: 10.1039/b815064h. Epub 2008 Oct 17.

PMID:
19005586
23.

LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans.

Entchev EV, Schwudke D, Zagoriy V, Matyash V, Bogdanova A, Habermann B, Zhu L, Shevchenko A, Kurzchalia TV.

J Biol Chem. 2008 Jun 20;283(25):17550-60. doi: 10.1074/jbc.M800965200. Epub 2008 Apr 4.

24.

Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics.

Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D.

J Lipid Res. 2008 May;49(5):1137-46. doi: 10.1194/jlr.D700041-JLR200. Epub 2008 Feb 16.

25.

Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice.

Heimerl S, Liebisch G, Le Lay S, Böttcher A, Wiesner P, Lindtner S, Kurzchalia TV, Simons K, Schmitz G.

Biochem Biophys Res Commun. 2008 Mar 21;367(4):826-33. doi: 10.1016/j.bbrc.2008.01.010. Epub 2008 Jan 10.

PMID:
18191037
26.

Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels.

Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC.

J Clin Invest. 2006 May;116(5):1284-91.

27.

Protein kinase C-mediated endothelial barrier regulation is caveolin-1-dependent.

Waschke J, Golenhofen N, Kurzchalia TV, Drenckhahn D.

Histochem Cell Biol. 2006 Jul;126(1):17-26. Epub 2006 Jan 14.

PMID:
16416023
28.

Getting rid of caveolins: phenotypes of caveolin-deficient animals.

Le Lay S, Kurzchalia TV.

Biochim Biophys Acta. 2005 Dec 30;1746(3):322-33. Epub 2005 Jun 23. Review.

29.

Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39.

Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S.

J Biol Chem. 2005 Jul 15;280(28):26406-14. Epub 2005 May 12.

30.

Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans.

Entchev EV, Kurzchalia TV.

Semin Cell Dev Biol. 2005 Apr;16(2):175-82.

PMID:
15797828
31.

Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles.

Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG.

J Cell Biol. 2005 Jan 31;168(3):465-76. Epub 2005 Jan 24.

32.

Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16.

Matyash V, Entchev EV, Mende F, Wilsch-Bräuninger M, Thiele C, Schmidt AW, Knölker HJ, Ward S, Kurzchalia TV.

PLoS Biol. 2004 Oct;2(10):e280. Epub 2004 Sep 21.

33.

Identification of caveolae-like structures on the surface of intact cells using scanning force microscopy.

Lucius H, Friedrichson T, Kurzchalia TV, Lewin GR.

J Membr Biol. 2003 Jul 15;194(2):97-108.

PMID:
14502434
34.

Why do worms need cholesterol?

Kurzchalia TV, Ward S.

Nat Cell Biol. 2003 Aug;5(8):684-8. Review.

PMID:
12894170
35.

Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane.

Wyse BD, Prior IA, Qian H, Morrow IC, Nixon S, Muncke C, Kurzchalia TV, Thomas WG, Parton RG, Hancock JF.

J Biol Chem. 2003 Jun 27;278(26):23738-46. Epub 2003 Apr 13.

36.

Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice.

Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV.

Science. 2001 Sep 28;293(5539):2449-52. Epub 2001 Aug 9.

37.

Distribution and transport of cholesterol in Caenorhabditis elegans.

Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV.

Mol Biol Cell. 2001 Jun;12(6):1725-36.

38.

Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans.

Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia TV.

Nat Cell Biol. 1999 Jun;1(2):127-9. No abstract available.

PMID:
10559886
39.

Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells.

Simons M, Friedrichson T, Schulz JB, Pitto M, Masserini M, Kurzchalia TV.

Mol Biol Cell. 1999 Oct;10(10):3187-96.

40.

Membrane microdomains and caveolae.

Kurzchalia TV, Parton RG.

Curr Opin Cell Biol. 1999 Aug;11(4):424-31. Review.

PMID:
10449327
41.

Microdomains of GPI-anchored proteins in living cells revealed by crosslinking.

Friedrichson T, Kurzchalia TV.

Nature. 1998 Aug 20;394(6695):802-5.

PMID:
9723622
42.

Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity.

Böhm H, Brinkmann V, Drab M, Henske A, Kurzchalia TV.

Curr Biol. 1997 Aug 1;7(8):603-6.

43.

And still they are moving.... dynamic properties of caveolae.

Kurzchalia TV, Parton RG.

FEBS Lett. 1996 Jun 24;389(1):52-4. Review.

44.

Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol.

Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV.

FEBS Lett. 1996 Jun 17;388(2-3):143-9.

45.

VIP21/caveolin is a cholesterol-binding protein.

Murata M, Peränen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K.

Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10339-43.

46.

VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro.

Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV.

Mol Biol Cell. 1995 Jul;6(7):911-27.

47.

Guilty by insolubility--does a protein's detergent insolubility reflect a caveolar location?

Kurzchalia TV, Hartmann E, Dupree P.

Trends Cell Biol. 1995 May;5(5):187-9.

PMID:
14731445
48.

VIP21-Caveolin, a protein of the trans-Golgi network and caveolae.

Kurzchalia TV, Dupree P, Monier S.

FEBS Lett. 1994 Jun 6;346(1):88-91. Review.

49.

Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells.

Fiedler K, Kobayashi T, Kurzchalia TV, Simons K.

Biochemistry. 1993 Jun 29;32(25):6365-73.

PMID:
8518282
50.

Caveolae and sorting in the trans-Golgi network of epithelial cells.

Dupree P, Parton RG, Raposo G, Kurzchalia TV, Simons K.

EMBO J. 1993 Apr;12(4):1597-605.

Supplemental Content

Loading ...
Support Center