Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 71

1.

Optimal regulation of bipedal walking speed despite an unexpected bump in the road.

Darici O, Temeltas H, Kuo AD.

PLoS One. 2018 Sep 26;13(9):e0204205. doi: 10.1371/journal.pone.0204205. eCollection 2018.

2.

A shared neural integrator for human posture control.

Haggerty SE, Wu AR, Sienko KH, Kuo AD.

J Neurophysiol. 2017 Aug 1;118(2):894-903. doi: 10.1152/jn.00428.2016. Epub 2017 Apr 26.

3.

The high cost of swing leg circumduction during human walking.

Shorter KA, Wu A, Kuo AD.

Gait Posture. 2017 May;54:265-270. doi: 10.1016/j.gaitpost.2017.03.021. Epub 2017 Mar 23.

PMID:
28371740
4.

The stabilizing properties of foot yaw in human walking.

Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD.

J Biomech. 2017 Feb 28;53:1-8. doi: 10.1016/j.jbiomech.2016.11.059. Epub 2016 Dec 1.

5.

Determinants of preferred ground clearance during swing phase of human walking.

Wu AR, Kuo AD.

J Exp Biol. 2016 Oct 1;219(Pt 19):3106-3113. Epub 2016 Jul 29.

6.

Soft tissues store and return mechanical energy in human running.

Riddick RC, Kuo AD.

J Biomech. 2016 Feb 8;49(3):436-41. doi: 10.1016/j.jbiomech.2016.01.001. Epub 2016 Jan 9.

7.

Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.

Huang TW, Shorter KA, Adamczyk PG, Kuo AD.

J Exp Biol. 2015 Nov;218(Pt 22):3541-50. doi: 10.1242/jeb.113910. Epub 2015 Sep 18.

8.

Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking.

Ojeda LV, Rebula JR, Kuo AD, Adamczyk PG.

Med Eng Phys. 2015 Oct;37(10):929-36. doi: 10.1016/j.medengphy.2015.06.010. Epub 2015 Aug 4.

9.

Subjective valuation of cushioning in a human drop landing task as quantified by trade-offs in mechanical work.

Skinner NE, Zelik KE, Kuo AD.

J Biomech. 2015 Jul 16;48(10):1887-92. doi: 10.1016/j.jbiomech.2015.04.029. Epub 2015 Apr 29.

10.

The cost of leg forces in bipedal locomotion: a simple optimization study.

Rebula JR, Kuo AD.

PLoS One. 2015 Feb 23;10(2):e0117384. doi: 10.1371/journal.pone.0117384. eCollection 2015.

11.

Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults.

Fu XY, Zelik KE, Board WJ, Browning RC, Kuo AD.

Med Sci Sports Exerc. 2015 Jul;47(7):1435-43. doi: 10.1249/MSS.0000000000000554.

12.

Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees.

Adamczyk PG, Kuo AD.

IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):776-85. doi: 10.1109/TNSRE.2014.2356722. Epub 2014 Sep 12.

13.

The role of series ankle elasticity in bipedal walking.

Zelik KE, Huang TW, Adamczyk PG, Kuo AD.

J Theor Biol. 2014 Apr 7;346:75-85. doi: 10.1016/j.jtbi.2013.12.014. Epub 2013 Dec 21.

14.

Mechanics and energetics of load carriage during human walking.

Huang TW, Kuo AD.

J Exp Biol. 2014 Feb 15;217(Pt 4):605-13. doi: 10.1242/jeb.091587. Epub 2013 Nov 6.

15.

Two independent contributions to step variability during over-ground human walking.

Collins SH, Kuo AD.

PLoS One. 2013 Aug 28;8(8):e73597. doi: 10.1371/journal.pone.0073597. eCollection 2013.

16.

Biomechanics and energetics of walking on uneven terrain.

Voloshina AS, Kuo AD, Daley MA, Ferris DP.

J Exp Biol. 2013 Nov 1;216(Pt 21):3963-70. doi: 10.1242/jeb.081711. Epub 2013 Aug 2.

17.

Mobile platform for motion capture of locomotion over long distances.

Ojeda L, Rebula JR, Adamczyk PG, Kuo AD.

J Biomech. 2013 Sep 3;46(13):2316-9. doi: 10.1016/j.jbiomech.2013.06.002. Epub 2013 Jul 19.

18.

Measurement of foot placement and its variability with inertial sensors.

Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD.

Gait Posture. 2013 Sep;38(4):974-80. doi: 10.1016/j.gaitpost.2013.05.012. Epub 2013 Jun 26.

19.

Mechanical and energetic consequences of rolling foot shape in human walking.

Adamczyk PG, Kuo AD.

J Exp Biol. 2013 Jul 15;216(Pt 14):2722-31. doi: 10.1242/jeb.082347. Epub 2013 Apr 11.

20.

Energetic cost of walking with increased step variability.

O'Connor SM, Xu HZ, Kuo AD.

Gait Posture. 2012 May;36(1):102-7. doi: 10.1016/j.gaitpost.2012.01.014. Epub 2012 Mar 28.

21.

Mechanical work as an indirect measure of subjective costs influencing human movement.

Zelik KE, Kuo AD.

PLoS One. 2012;7(2):e31143. doi: 10.1371/journal.pone.0031143. Epub 2012 Feb 24.

22.

The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.

Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, Adamczyk PG, Collins SH, Kuo AD, Czerniecki JM.

Hum Mov Sci. 2012 Aug;31(4):918-31. doi: 10.1016/j.humov.2011.08.005. Epub 2011 Nov 17.

23.

The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.

Morgenroth DC, Segal AD, Zelik KE, Czerniecki JM, Klute GK, Adamczyk PG, Orendurff MS, Hahn ME, Collins SH, Kuo AD.

Gait Posture. 2011 Oct;34(4):502-7. doi: 10.1016/j.gaitpost.2011.07.001. Epub 2011 Jul 30.

24.

Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

Zelik KE, Collins SH, Adamczyk PG, Segal AD, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, Czerniecki JM, Kuo AD.

IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):411-9. doi: 10.1109/TNSRE.2011.2159018. Epub 2011 Jun 23.

25.

Distinct fast and slow processes contribute to the selection of preferred step frequency during human walking.

Snaterse M, Ton R, Kuo AD, Donelan JM.

J Appl Physiol (1985). 2011 Jun;110(6):1682-90. doi: 10.1152/japplphysiol.00536.2010. Epub 2011 Mar 10.

26.

Energetic costs of producing muscle work and force in a cyclical human bouncing task.

Dean JC, Kuo AD.

J Appl Physiol (1985). 2011 Apr;110(4):873-80. doi: 10.1152/japplphysiol.00505.2010. Epub 2011 Jan 6.

27.

Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return.

Zelik KE, Kuo AD.

J Exp Biol. 2010 Dec 15;213(Pt 24):4257-64. doi: 10.1242/jeb.044297.

28.

Extraction of individual muscle mechanical action from endpoint force.

Kutch JJ, Kuo AD, Rymer WZ.

J Neurophysiol. 2010 Jun;103(6):3535-46. doi: 10.1152/jn.00956.2009. Epub 2010 Apr 14.

29.

Recycling energy to restore impaired ankle function during human walking.

Collins SH, Kuo AD.

PLoS One. 2010 Feb 17;5(2):e9307. doi: 10.1371/journal.pone.0009307.

30.

Dynamic principles of gait and their clinical implications.

Kuo AD, Donelan JM.

Phys Ther. 2010 Feb;90(2):157-74. doi: 10.2522/ptj.20090125. Epub 2009 Dec 18. Review.

31.

Redirection of center-of-mass velocity during the step-to-step transition of human walking.

Adamczyk PG, Kuo AD.

J Exp Biol. 2009 Aug;212(Pt 16):2668-78. doi: 10.1242/jeb.027581.

32.

Dynamic arm swinging in human walking.

Collins SH, Adamczyk PG, Kuo AD.

Proc Biol Sci. 2009 Oct 22;276(1673):3679-88. doi: 10.1098/rspb.2009.0664. Epub 2009 Jul 29.

33.

Direction-dependent control of balance during walking and standing.

O'Connor SM, Kuo AD.

J Neurophysiol. 2009 Sep;102(3):1411-9. doi: 10.1152/jn.00131.2009. Epub 2009 Jun 24.

35.

Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait.

Gordon KE, Ferris DP, Kuo AD.

Arch Phys Med Rehabil. 2009 Jan;90(1):136-44. doi: 10.1016/j.apmr.2008.07.014.

PMID:
19154840
36.

Elastic coupling of limb joints enables faster bipedal walking.

Dean JC, Kuo AD.

J R Soc Interface. 2009 Jun 6;6(35):561-73. doi: 10.1098/rsif.2008.0415. Epub 2008 Oct 28.

37.

Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation.

Kutch JJ, Kuo AD, Bloch AM, Rymer WZ.

J Neurophysiol. 2008 Nov;100(5):2455-71. doi: 10.1152/jn.90274.2008. Epub 2008 Sep 17.

38.

A simple method for calibrating force plates and force treadmills using an instrumented pole.

Collins SH, Adamczyk PG, Ferris DP, Kuo AD.

Gait Posture. 2009 Jan;29(1):59-64. doi: 10.1016/j.gaitpost.2008.06.010. Epub 2008 Aug 27.

39.

Ankle fixation need not increase the energetic cost of human walking.

Vanderpool MT, Collins SH, Kuo AD.

Gait Posture. 2008 Oct;28(3):427-33. doi: 10.1016/j.gaitpost.2008.01.016. Epub 2008 Mar 24.

40.

Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD.

Science. 2008 Feb 8;319(5864):807-10. doi: 10.1126/science.1149860.

41.

The effect of lateral stabilization on walking in young and old adults.

Dean JC, Alexander NB, Kuo AD.

IEEE Trans Biomed Eng. 2007 Nov;54(11):1919-26.

PMID:
18018687
42.

The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.

Kuo AD.

Hum Mov Sci. 2007 Aug;26(4):617-56. Epub 2007 Jul 6. Review.

PMID:
17617481
43.
44.

Visual and haptic feedback contribute to tuning and online control during object manipulation.

Huang FC, Gillespie RB, Kuo AD.

J Mot Behav. 2007 May;39(3):179-93.

PMID:
17550870
45.

The advantages of a rolling foot in human walking.

Adamczyk PG, Collins SH, Kuo AD.

J Exp Biol. 2006 Oct;209(Pt 20):3953-63.

46.

Human adaptation to interaction forces in visuo-motor coordination.

Huang FC, Gillespie RB, Kuo AD.

IEEE Trans Neural Syst Rehabil Eng. 2006 Sep;14(3):390-7.

PMID:
17009499
47.

Biophysics. Harvesting energy by improving the economy of human walking.

Kuo AD.

Science. 2005 Sep 9;309(5741):1686-7. No abstract available.

PMID:
16151001
48.

An optimal state estimation model of sensory integration in human postural balance.

Kuo AD.

J Neural Eng. 2005 Sep;2(3):S235-49. Epub 2005 Aug 31.

49.

Energetic consequences of walking like an inverted pendulum: step-to-step transitions.

Kuo AD, Donelan JM, Ruina A.

Exerc Sport Sci Rev. 2005 Apr;33(2):88-97. Review.

PMID:
15821430
50.

Mechanics and energetics of swinging the human leg.

Doke J, Donelan JM, Kuo AD.

J Exp Biol. 2005 Feb;208(Pt 3):439-45. Erratum in: J Exp Biol. 2007 Jul;210(Pt 13):2399.

Supplemental Content

Support Center