Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

Background field removal technique based on non-regularized variable kernels sophisticated harmonic artifact reduction for phase data for quantitative susceptibility mapping.

Kan H, Arai N, Takizawa M, Omori K, Kasai H, Kunitomo H, Hirose Y, Shibamoto Y.

Magn Reson Imaging. 2018 Jun 15;52:94-101. doi: 10.1016/j.mri.2018.06.006. [Epub ahead of print]

PMID:
29902566
2.

Quantitative susceptibility mapping using principles of echo shifting with a train of observations sequence on 1.5T MRI.

Kan H, Arai N, Kasai H, Kunitomo H, Hirose Y, Shibamoto Y.

Magn Reson Imaging. 2017 Oct;42:37-42. doi: 10.1016/j.mri.2017.05.002. Epub 2017 May 16.

PMID:
28526432
3.

A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na+ Chemotaxis.

Wang L, Sato H, Satoh Y, Tomioka M, Kunitomo H, Iino Y.

J Neurosci. 2017 Feb 22;37(8):2097-2111. doi: 10.1523/JNEUROSCI.1774-16.2017. Epub 2017 Jan 26.

4.

Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

Kan H, Kasai H, Arai N, Kunitomo H, Hirose Y, Shibamoto Y.

Magn Reson Imaging. 2016 Sep;34(7):1026-33. doi: 10.1016/j.mri.2016.04.019. Epub 2016 Apr 22.

PMID:
27114339
5.

Application of a variable filter for presampled modulation transfer function analysis with the edge method.

Higashide R, Ichikawa K, Kunitomo H, Ohashi K.

Radiol Phys Technol. 2015 Jul;8(2):320-30. doi: 10.1007/s12194-015-0325-2. Epub 2015 Jun 19.

PMID:
26088943
6.

Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump.

Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O.

Nature. 2015 May 7;521(7550):48-53. doi: 10.1038/nature14322. Epub 2015 Apr 6.

PMID:
25849775
7.

Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.

Satoh Y, Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y.

J Neurosci. 2014 Nov 19;34(47):15631-7. doi: 10.1523/JNEUROSCI.1757-14.2014.

8.

Investigation of measurement accuracy of factors used for detective quantum efficiency measurement in digital radiography.

Kunitomo H, Koyama S, Higashide R, Ichikawa K, Hattori M, Okada Y, Hayashi N, Sawada M.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2014 Jul;70(7):653-61. Japanese.

9.

Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans.

Ohno H, Kato S, Naito Y, Kunitomo H, Tomioka M, Iino Y.

Science. 2014 Jul 18;345(6194):313-7. doi: 10.1126/science.1250709.

10.

Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.

Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, Iino Y.

Nat Commun. 2013;4:2210. doi: 10.1038/ncomms3210.

PMID:
23887678
11.

Examination of the optimal temporal resolution required for computed tomography coronary angiography.

Ohashi K, Ichikawa K, Hara M, Kawai T, Kunitomo H, Higashide R, Shibamoto Y.

Radiol Phys Technol. 2013 Jul;6(2):453-60. doi: 10.1007/s12194-013-0218-1. Epub 2013 May 26.

PMID:
23709040
12.

[Physical image properties of digital radiography systems in low dose range].

Kunitomo H, Ichikawa K, Higashide R, Ohashi K.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2012;68(8):961-9. Japanese.

13.

[A comparative study of electrocardiogram multi-segment reconstruction and dual source computed tomography using a computer controlled coronary phantom].

Ohashi K, Ichikawa K, Higashide R, Kunitomo H.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2011;67(8):880-7. Japanese.

14.

Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis elegans.

Iwata R, Oda S, Kunitomo H, Iino Y.

Proc Natl Acad Sci U S A. 2011 May 3;108(18):7589-94. doi: 10.1073/pnas.1016232108. Epub 2011 Apr 18.

15.

Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans.

Yamada K, Hirotsu T, Matsuki M, Butcher RA, Tomioka M, Ishihara T, Clardy J, Kunitomo H, Iino Y.

Science. 2010 Sep 24;329(5999):1647-50. doi: 10.1126/science.1192020.

16.

Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.

Adachi T, Kunitomo H, Tomioka M, Ohno H, Okochi Y, Mori I, Iino Y.

Genetics. 2010 Dec;186(4):1309-19. doi: 10.1534/genetics.110.119768. Epub 2010 Sep 13.

17.

[Investigation of error factors in analysis of digital noise power spectrum].

Kunitomo H, Ichikawa K, Higashide R, Ohashi K, Sawada M.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010 Jul 20;66(7):734-42. Japanese.

18.

Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs).

Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, Setou M.

J Biol Chem. 2010 Jul 23;285(30):22936-41. doi: 10.1074/jbc.C110.128280. Epub 2010 Jun 2.

19.

A reporter assay for G-protein-coupled receptors using a B-cell line suitable for stable episomal expression.

Saeki S, Kunitomo H, Narita Y, Mimura H, Nishi T, Sasaki K.

Anal Biochem. 2010 May 15;400(2):163-72. doi: 10.1016/j.ab.2010.01.036. Epub 2010 Feb 1.

PMID:
20122890
20.

[Modulation transfer function--presampled MTF measurements by Fourier analysis using square wave chart].

Kunitomo H.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009 Nov 20;65(11):1561-7. Japanese. No abstract available.

21.

Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.

Takayama J, Faumont S, Kunitomo H, Lockery SR, Iino Y.

Nucleic Acids Res. 2010 Jan;38(1):131-42. doi: 10.1093/nar/gkp868. Epub 2009 Oct 29.

22.

[Base of digital image data and physical measurement].

Kunitomo H.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009 Aug 20;65(8):1085-93. Japanese. No abstract available.

23.

A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans.

Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, Iino Y, Kubo T.

Nat Neurosci. 2009 Aug;12(8):981-7. doi: 10.1038/nn.2347. Epub 2009 Jun 28.

PMID:
19561603
24.

[Influence of angle-measurement error on pre-sampled MTF and proposal of an optimal technique of angle measurement].

Higashide R, Ichikawa K, Kunitomo H, Ohashi K, Kawano M.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009 Feb 20;65(2):245-53. Japanese.

25.

GPC-1, a G protein gamma-subunit, regulates olfactory adaptation in Caenorhabditis elegans.

Yamada K, Hirotsu T, Matsuki M, Kunitomo H, Iino Y.

Genetics. 2009 Apr;181(4):1347-57. doi: 10.1534/genetics.108.099002. Epub 2009 Feb 2.

26.

[Proposal and verification of presampled MTF measurement by simple analysis using the edge method].

Higashide R, Ichikawa K, Kunitomo H, Sawada M.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2008 Apr 20;64(4):417-25. Japanese.

27.

CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans.

Ikeda DD, Duan Y, Matsuki M, Kunitomo H, Hutter H, Hedgecock EM, Iino Y.

Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5260-5. doi: 10.1073/pnas.0711894105.

28.

Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation.

Kunitomo H, Iino Y.

Genes Cells. 2008 Jan;13(1):13-25. doi: 10.1111/j.1365-2443.2007.01147.x.

29.

The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.

Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y.

Neuron. 2006 Sep 7;51(5):613-25.

30.

Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans.

Matsuki M, Kunitomo H, Iino Y.

Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1112-7. Epub 2006 Jan 17.

31.

MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans.

Kage E, Hayashi Y, Takeuchi H, Hirotsu T, Kunitomo H, Inoue T, Arai H, Iino Y, Kubo T.

Curr Biol. 2005 Sep 6;15(17):1554-9.

32.
33.
34.

Associations of lifestyle factors with bone mineral density among male university students in Japan.

Egami I, Wakai K, Kunitomo H, Tamakoshi A, Ando M, Nakayama T, Ohno Y.

J Epidemiol. 2003 Jan;13(1):48-55.

35.

[New method of measuring presampling MTF by fourier transform of square-wave chart image].

Itikawa K, Kunitomo H, Sakurai T, Ohashi K, Sugiyama M, Miyati T, Fujita H.

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2002 Sep;58(9):1261-7. Japanese.

PMID:
12520222
37.

Schizosaccharomyces pombe pac2+ controls the onset of sexual development via a pathway independent of the cAMP cascade.

Kunitomo H, Sugimoto A, Wilkinson CR, Yamamoto M.

Curr Genet. 1995 Jun;28(1):32-8.

PMID:
8536311
38.
39.

BRST analysis of physical states in a two-dimensional black hole.

Itoh K, Kunitomo H, Ohta N, Sakaguchi M.

Phys Rev D Part Fields. 1993 Oct 15;48(8):3793-3808. No abstract available.

PMID:
10016654
40.

Loop amplitudes in covariant string field theory.

Hata H, Itoh K, Kugo T, Kunitomo H, Ogawa K.

Phys Rev D Part Fields. 1987 Feb 15;35(4):1356-1384. No abstract available.

PMID:
9957793
41.

Covariant string field theory. II.

Hata H, Itoh K, Kugo T, Kunitomo H, Ogawa K.

Phys Rev D Part Fields. 1987 Feb 15;35(4):1318-1355. No abstract available.

PMID:
9957792
42.

Covariant string field theory.

Hata H, Itoh K, Kugo T, Kunitomo H, Ogawa K.

Phys Rev D Part Fields. 1986 Oct 15;34(8):2360-2429. No abstract available.

PMID:
9957428

Supplemental Content

Loading ...
Support Center