Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 72

1.

Structural basis for virulence regulation in Vibrio cholerae by unsaturated fatty acid components of bile.

Cruite JT, Kovacikova G, Clark KA, Woodbrey AK, Skorupski K, Kull FJ.

Commun Biol. 2019 Nov 28;2:440. doi: 10.1038/s42003-019-0686-x. eCollection 2019.

2.

A Modified ToxT Inhibitor Reduces Vibrio cholerae Virulence in Vivo.

Woodbrey AK, Onyango EO, Kovacikova G, Kull FJ, Gribble GW.

Biochemistry. 2018 Sep 25;57(38):5609-5615. doi: 10.1021/acs.biochem.8b00667. Epub 2018 Sep 12.

3.

Crystal structure of an inactive variant of the quorum-sensing master regulator HapR from the protease-deficient non-O1, non-O139 Vibrio cholerae strain V2.

Cruite J, Succo P, Raychaudhuri S, Kull FJ.

Acta Crystallogr F Struct Biol Commun. 2018 Jun 1;74(Pt 6):331-336. doi: 10.1107/S2053230X18006519. Epub 2018 May 17.

4.

Identification of a Small Molecule Activator for AphB, a LysR-Type Virulence Transcriptional Regulator in Vibrio cholerae.

Privett BR, Pellegrini M, Kovacikova G, Taylor RK, Skorupski K, Mierke D, Kull FJ.

Biochemistry. 2017 Jul 25;56(29):3840-3849. doi: 10.1021/acs.biochem.7b00337. Epub 2017 Jul 11.

5.

Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS.

Midgett CR, Almagro-Moreno S, Pellegrini M, Taylor RK, Skorupski K, Kull FJ.

Mol Microbiol. 2017 Jul;105(2):258-272. doi: 10.1111/mmi.13699. Epub 2017 May 17.

6.

A new class of inhibitors of the AraC family virulence regulator Vibrio cholerae ToxT.

Woodbrey AK, Onyango EO, Pellegrini M, Kovacikova G, Taylor RK, Gribble GW, Kull FJ.

Sci Rep. 2017 Mar 23;7:45011. doi: 10.1038/srep45011.

7.

The 40-residue insertion in Vibrio cholerae FadR facilitates binding of an additional fatty acyl-CoA ligand.

Shi W, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ.

Nat Commun. 2015 Jan 21;6:6032. doi: 10.1038/ncomms7032.

8.

A slow dance for microtubule acetylation.

Kull FJ, Sloboda RD.

Cell. 2014 Jun 5;157(6):1255-6. doi: 10.1016/j.cell.2014.05.021.

9.

Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments.

Cochran JC, Thompson ME, Kull FJ.

J Biol Chem. 2013 Sep 27;288(39):28312-23. doi: 10.1074/jbc.M113.466045. Epub 2013 Aug 19.

10.

A molecular motor finds its track.

Cochran JC, Kull FJ.

Nat Struct Mol Biol. 2013 Aug;20(8):920-1. doi: 10.1038/nsmb.2644. No abstract available.

PMID:
23912357
11.

Force generation by kinesin and myosin cytoskeletal motor proteins.

Kull FJ, Endow SA.

J Cell Sci. 2013 Jan 1;126(Pt 1):9-19. doi: 10.1242/jcs.103911. Epub 2013 Mar 13. Review.

12.

FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation.

Thompson ME, Heimsath EG, Gauvin TJ, Higgs HN, Kull FJ.

Nat Struct Mol Biol. 2013 Jan;20(1):111-8. doi: 10.1038/nsmb.2462. Epub 2012 Dec 9.

13.

Crystal structure of the human spastin AAA domain.

Taylor JL, White SR, Lauring B, Kull FJ.

J Struct Biol. 2012 Aug;179(2):133-7. doi: 10.1016/j.jsb.2012.03.002. Epub 2012 Mar 14.

14.

A metal switch for controlling the activity of molecular motor proteins.

Cochran JC, Zhao YC, Wilcox DE, Kull FJ.

Nat Struct Mol Biol. 2011 Dec 25;19(1):122-7. doi: 10.1038/nsmb.2190.

15.

The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH.

Taylor JL, De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ.

Mol Microbiol. 2012 Feb;83(3):457-70. doi: 10.1111/j.1365-2958.2011.07919.x. Epub 2012 Jan 10.

16.

Kinesins at a glance.

Endow SA, Kull FJ, Liu H.

J Cell Sci. 2010 Oct 15;123(Pt 20):3420-4. doi: 10.1242/jcs.064113. No abstract available. Erratum in: J Cell Sci. 2010 Nov 15;123(Pt 22):4000.

17.

A kinesin motor in a force-producing conformation.

Heuston E, Bronner CE, Kull FJ, Endow SA.

BMC Struct Biol. 2010 Jul 5;10:19. doi: 10.1186/1472-6807-10-19.

18.

Modulation of the kinesin ATPase cycle by neck linker docking and microtubule binding.

Zhao YC, Kull FJ, Cochran JC.

J Biol Chem. 2010 Aug 13;285(33):25213-20. doi: 10.1074/jbc.M110.123067. Epub 2010 Jun 17.

19.

Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes.

Lowden MJ, Skorupski K, Pellegrini M, Chiorazzo MG, Taylor RK, Kull FJ.

Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2860-5. doi: 10.1073/pnas.0915021107. Epub 2010 Feb 1.

20.

ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement.

Cochran JC, Sindelar CV, Mulko NK, Collins KA, Kong SE, Hawley RS, Kull FJ.

Cell. 2009 Jan 9;136(1):110-22. doi: 10.1016/j.cell.2008.11.048.

21.

Kinesin motors: no strain, no gain.

Cochran JC, Kull FJ.

Cell. 2008 Sep 19;134(6):918-9. doi: 10.1016/j.cell.2008.09.005.

22.

Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR.

De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ.

J Bacteriol. 2007 Aug;189(15):5683-91. Epub 2007 May 25.

23.

Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis.

Dürrwang U, Fujita-Becker S, Erent M, Kull FJ, Tsiavaliaris G, Geeves MA, Manstein DJ.

J Cell Sci. 2006 Feb 1;119(Pt 3):550-8.

24.

A highly conserved amino-terminal region of sonic hedgehog is required for the formation of its freely diffusible multimeric form.

Goetz JA, Singh S, Suber LM, Kull FJ, Robbins DJ.

J Biol Chem. 2006 Feb 17;281(7):4087-93. Epub 2005 Dec 9.

25.

Crystal structure of the GTPase domain of rat dynamin 1.

Reubold TF, Eschenburg S, Becker A, Leonard M, Schmid SL, Vallee RB, Kull FJ, Manstein DJ.

Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13093-8. Epub 2005 Sep 2.

26.

Crystal structure of the virulence gene activator AphA from Vibrio cholerae reveals it is a novel member of the winged helix transcription factor superfamily.

De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ.

J Biol Chem. 2005 Apr 8;280(14):13779-83. Epub 2005 Jan 12.

27.

A new structural state of myosin.

Kull FJ, Endow SA.

Trends Biochem Sci. 2004 Mar;29(3):103-6. Review.

PMID:
15055201
28.

Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide.

Holmes KC, Angert I, Kull FJ, Jahn W, Schröder RR.

Nature. 2003 Sep 25;425(6956):423-7.

PMID:
14508495
29.

A structural model for actin-induced nucleotide release in myosin.

Reubold TF, Eschenburg S, Becker A, Kull FJ, Manstein DJ.

Nat Struct Biol. 2003 Oct;10(10):826-30. Epub 2003 Sep 21.

PMID:
14502270
30.

Motor proteins of the kinesin superfamily: structure and mechanism.

Kull FJ.

Essays Biochem. 2000;35:61-73. Review.

PMID:
12471890
31.

Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium.

Tsiavaliaris G, Fujita-Becker S, Batra R, Levitsky DI, Kull FJ, Geeves MA, Manstein DJ.

EMBO Rep. 2002 Nov;3(11):1099-105. Epub 2002 Oct 22. Erratum in: EMBO Rep. 2002 Dec;3(12):1228.

32.

Crystal structure of the motor domain of a class-I myosin.

Kollmar M, Dürrwang U, Kliche W, Manstein DJ, Kull FJ.

EMBO J. 2002 Jun 3;21(11):2517-25.

33.

Kinesin: switch I & II and the motor mechanism.

Kull FJ, Endow SA.

J Cell Sci. 2002 Jan 1;115(Pt 1):15-23. Review.

34.

Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms.

Niemann HH, Knetsch ML, Scherer A, Manstein DJ, Kull FJ.

EMBO J. 2001 Nov 1;20(21):5813-21.

35.

Inhibition of potato polyphenol oxidase by anions and activity in various carboxylate buffers (pH 4.8) at constant ionic strength.

Malkin BD, Thickman KR, Markworth CJ, Wilcox DE, Kull FJ.

J Enzyme Inhib. 2001;16(2):135-45.

PMID:
11342282
36.

Structure of a genetically engineered molecular motor.

Kliche W, Fujita-Becker S, Kollmar M, Manstein DJ, Kull FJ.

EMBO J. 2001 Jan 15;20(1-2):40-6.

37.

Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites.

Sack S, Kull FJ, Mandelkow E.

Eur J Biochem. 1999 May;262(1):1-11. Review.

38.

The case for a common ancestor: kinesin and myosin motor proteins and G proteins.

Kull FJ, Vale RD, Fletterick RJ.

J Muscle Res Cell Motil. 1998 Nov;19(8):877-86.

PMID:
10047987
39.

Is the tubulin/FtsZ fold related to the G-protein fold?

Kull FJ, Fletterick RJ.

Trends Cell Biol. 1998 Aug;8(8):306-7. No abstract available.

PMID:
9704406
41.

Crystal structure of the motor domain of the kinesin-related motor ncd.

Sablin EP, Kull FJ, Cooke R, Vale RD, Fletterick RJ.

Nature. 1996 Apr 11;380(6574):555-9.

PMID:
8606780
42.

Crystal structure of the kinesin motor domain reveals a structural similarity to myosin.

Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD.

Nature. 1996 Apr 11;380(6574):550-5.

43.
44.

Solution structure of two molecular motor domains: nonclaret disjunctional and kinesin.

Eden D, Luu BQ, Zapata DJ, Sablin EP, Kull FJ.

Biophys J. 1995 Apr;68(4 Suppl):59S-64S; discussion 65S.

46.

Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules.

Vale RD, Coppin CM, Malik F, Kull FJ, Milligan RA.

J Biol Chem. 1994 Sep 23;269(38):23769-75.

47.

Porcine thyroid cytosolic, latent alkaline ribonuclease: resistance to protein denaturants.

Crute BE, Kay JD, Grace ES, Kull FJ.

Comp Biochem Physiol B. 1992 Jan-Feb;101(1-2):289-97.

PMID:
1499276
48.

The transport systems for selenomethionine/methionine and selenocystine/cystine in Escherichia coli K-12 appear to be cooperative.

Kull FJ, Lindblow-Kull C, Shrift A.

Membr Biochem. 1987-1988;7(4):207-17. No abstract available.

PMID:
3077145
49.

Single transporter for sulfate, selenate, and selenite in Escherichia coli K-12.

Lindblow-Kull C, Kull FJ, Shrift A.

J Bacteriol. 1985 Sep;163(3):1267-9.

50.

The ribonuclease inhibitors from porcine thyroid and liver are slow, tight-binding inhibitors of bovine pancreatic ribonuclease A.

Turner PM, Lerea KM, Kull FJ.

Biochem Biophys Res Commun. 1983 Aug 12;114(3):1154-60.

PMID:
6615510

Supplemental Content

Support Center