Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

Concurrent Duplication of Drosophila Cid and Cenp-C Genes Resulted in Accelerated Evolution and Male Germline-Biased Expression of the New Copies.

Teixeira JR, Dias GB, Svartman M, Ruiz A, Kuhn GCS.

J Mol Evol. 2018 Jun 23. doi: 10.1007/s00239-018-9851-y. [Epub ahead of print]

PMID:
29934734
2.

A Horizontally Transferred Autonomous Helitron Became a Full Polydnavirus Segment in Cotesia vestalis.

Heringer P, Dias GB, Kuhn GCS.

G3 (Bethesda). 2017 Dec 4;7(12):3925-3935. doi: 10.1534/g3.117.300280.

3.

Comparative Genomic In Situ Hybridization and the Possible Role of Retroelements in the Karyotypic Evolution of Three Akodontini Species.

Araújo NP, Kuhn GCS, Vieira FN, Morcatty TQ, Paglia AP, Svartman M.

Int J Genomics. 2017;2017:5935380. doi: 10.1155/2017/5935380. Epub 2017 Aug 15.

4.

Identification and characterization of a subtelomeric satellite DNA in Callitrichini monkeys.

Araújo NP, de Lima LG, Dias GB, Kuhn GCS, de Melo AL, Yonenaga-Yassuda Y, Stanyon R, Svartman M.

DNA Res. 2017 Aug 1;24(4):377-385. doi: 10.1093/dnares/dsx010.

5.

High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis.

Palacios-Gimenez OM, Dias GB, de Lima LG, Kuhn GCES, Ramos É, Martins C, Cabral-de-Mello DC.

Sci Rep. 2017 Jul 25;7(1):6422. doi: 10.1038/s41598-017-06822-8.

6.

Dissecting the Satellite DNA Landscape in Three Cactophilic Drosophila Sequenced Genomes.

de Lima LG, Svartman M, Kuhn GCS.

G3 (Bethesda). 2017 Aug 7;7(8):2831-2843. doi: 10.1534/g3.117.042093.

7.

Helitrons in Drosophila: Chromatin modulation and tandem insertions.

Dias GB, Heringer P, Kuhn GC.

Mob Genet Elements. 2016 Mar 7;6(2):e1154638. eCollection 2016 Mar-Apr.

8.

Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression.

Dias GB, Heringer P, Svartman M, Kuhn GC.

Chromosome Res. 2015 Sep;23(3):597-613. doi: 10.1007/s10577-015-9480-x. Review.

PMID:
26408292
9.

'Satellite DNA transcripts have diverse biological roles in Drosophila'.

Kuhn GC.

Heredity (Edinb). 2015 Jul;115(1):1-2. doi: 10.1038/hdy.2015.12. Epub 2015 Mar 25. No abstract available.

10.

Genomics of ecological adaptation in cactophilic Drosophila.

Guillén Y, Rius N, Delprat A, Williford A, Muyas F, Puig M, Casillas S, Ràmia M, Egea R, Negre B, Mir G, Camps J, Moncunill V, Ruiz-Ruano FJ, Cabrero J, de Lima LG, Dias GB, Ruiz JC, Kapusta A, Garcia-Mas J, Gut M, Gut IG, Torrents D, Camacho JP, Kuhn GC, Feschotte C, Clark AG, Betrán E, Barbadilla A, Ruiz A.

Genome Biol Evol. 2014 Dec 31;7(1):349-66. doi: 10.1093/gbe/evu291.

11.

Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis.

Dias GB, Svartman M, Delprat A, Ruiz A, Kuhn GC.

Genome Biol Evol. 2014 May 24;6(6):1302-13. doi: 10.1093/gbe/evu108.

12.

A recent transposition of river involving Paraná and São Francisco basins: effects on the genetic variability and structure of the neotropical fish Parauchenipterus galeatus (Siluriformes, Auchenipteridae).

Lui RL, Blanco DR, Margarido VP, Kuhn GC, Gomes VN, Prioli AJ, Moreira-Filho O.

Mitochondrial DNA. 2012 Oct;23(5):388-95. doi: 10.3109/19401736.2012.690747. Epub 2012 Jul 18.

PMID:
22803711
13.

The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes.

Kuhn GC, Küttler H, Moreira-Filho O, Heslop-Harrison JS.

Mol Biol Evol. 2012 Jan;29(1):7-11. doi: 10.1093/molbev/msr173. Epub 2011 Jun 28.

PMID:
21712468
14.
15.

The non-regular orbit: three satellite DNAs in Drosophila martensis (buzzatii complex, repleta group) followed three different evolutionary pathways.

Kuhn GC, Schwarzacher T, Heslop-Harrison JS.

Mol Genet Genomics. 2010 Oct;284(4):251-62. doi: 10.1007/s00438-010-0564-1. Epub 2010 Aug 4.

PMID:
20683615
16.

Evolutionary dynamics and sites of illegitimate recombination revealed in the interspersion and sequence junctions of two nonhomologous satellite DNAs in cactophilic Drosophila species.

Kuhn GC, Teo CH, Schwarzacher T, Heslop-Harrison JS.

Heredity (Edinb). 2009 May;102(5):453-64. doi: 10.1038/hdy.2009.9. Epub 2009 Mar 4.

17.

Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster.

Kuhn GC, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS.

Chromosome Res. 2008;16(2):307-24. doi: 10.1007/s10577-007-1195-1. Epub 2008 Feb 11.

PMID:
18266060
18.

Low rates of homogenization of the DBC-150 satellite DNA family restricted to a single pair of microchromosomes in species from the Drosophila buzzatii cluster.

Kuhn GC, Franco FF, Manfrin MH, Moreira-Filho O, Sene FM.

Chromosome Res. 2007;15(4):457-69. Epub 2007 May 15.

PMID:
17551842
19.

Conservation of pBuM-2 satellite DNA sequences among geographically isolated Drosophila gouveai populations from Brazil.

de Franco FF, Kuhn GC, de Sene FM, Manfrin MH.

Genetica. 2006 Sep-Nov;128(1-3):287-95.

PMID:
17028958
22.

On the pBuM189 satellite DNA variability among South American populations of Drosophila buzzatii.

Kuhn GC, Franco FF, Silva WA Jr, Martinez-Rossi NM, Sene FM.

Hereditas. 2003;139(3):161-6.

23.

The Drosophila serido speciation puzzle: putting new pieces together.

Ruiz A, Cansian AM, Kuhn GC, Alves MA, Sene FM.

Genetica. 2000;108(3):217-27.

PMID:
11294608
24.

Supplemental Content

Support Center