Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia.

Kuehne SA, Rood JI, Lyras D.

Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0040-2018.

PMID:
31172914
2.

Investigation of the effect of the water to powder ratio on hydraulic cement properties.

Koutroulis A, Batchelor H, Kuehne SA, Cooper PR, Camilleri J.

Dent Mater. 2019 May 29. pii: S0109-5641(18)31227-2. doi: 10.1016/j.dental.2019.05.011. [Epub ahead of print]

PMID:
31151852
3.

Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system.

Ingle P, Groothuis D, Rowe P, Huang H, Cockayne A, Kuehne SA, Jiang W, Gu Y, Humphreys CM, Minton NP.

Sci Rep. 2019 May 31;9(1):8123. doi: 10.1038/s41598-019-44458-y.

4.

Which Parameters Affect Biofilm Removal with Acoustic Cavitation? A Review.

Vyas N, Manmi K, Wang Q, Jadhav AJ, Barigou M, Sammons RL, Kuehne SA, Walmsley AD.

Ultrasound Med Biol. 2019 May;45(5):1044-1055. doi: 10.1016/j.ultrasmedbio.2019.01.002. Epub 2019 Feb 19. Review.

PMID:
30792088
5.
6.

Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin.

Kuehne SA, Dempster AW, Collery MM, Joshi N, Jowett J, Kelly ML, Cave R, Longshaw CM, Minton NP.

J Antimicrob Chemother. 2018 Apr 1;73(4):973-980. doi: 10.1093/jac/dkx486.

7.

Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels.

Bilverstone TW, Kinsmore NL, Minton NP, Kuehne SA.

Anaerobe. 2017 Apr;44:51-54. doi: 10.1016/j.anaerobe.2017.01.009. Epub 2017 Jan 17.

8.

Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model.

Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, Stecher B, Bernier-Latmani R, Hapfelmeier S.

Front Cell Infect Microbiol. 2016 Dec 20;6:191. doi: 10.3389/fcimb.2016.00191. eCollection 2016.

9.

What's a SNP between friends: The influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives.

Collery MM, Kuehne SA, McBride SM, Kelly ML, Monot M, Cockayne A, Dupuy B, Minton NP.

Virulence. 2017 Aug 18;8(6):767-781. doi: 10.1080/21505594.2016.1237333. Epub 2016 Sep 21.

10.

The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia.

Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL, Kuehne SA, Schwan C, Eichhoff AM, Koch-Nolte F, Lyras D, Aktories K, Minton NP, Petri WA Jr.

Nat Microbiol. 2016 Jul 11;1(8):16108. doi: 10.1038/nmicrobiol.2016.108.

11.

Coinfection and Emergence of Rifamycin Resistance during a Recurrent Clostridium difficile Infection.

Stevenson EC, Major GA, Spiller RC, Kuehne SA, Minton NP.

J Clin Microbiol. 2016 Nov;54(11):2689-2694. Epub 2016 Aug 24.

12.

Clostridium difficile Genome Editing Using pyrE Alleles.

Ehsaan M, Kuehne SA, Minton NP.

Methods Mol Biol. 2016;1476:35-52. doi: 10.1007/978-1-4939-6361-4_4.

PMID:
27507332
13.

Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber.

Jafari NV, Kuehne SA, Minton NP, Allan E, Bajaj-Elliott M.

Anaerobe. 2016 Feb;37:96-102. doi: 10.1016/j.anaerobe.2015.12.007. Epub 2015 Dec 19.

PMID:
26708704
14.

Complete Genome Sequence of the Nonpathogenic Soil-Dwelling Bacterium Clostridium sporogenes Strain NCIMB 10696.

Kubiak AM, Poehlein A, Budd P, Kuehne SA, Winzer K, Theys J, Lambin P, Daniel R, Minton NP.

Genome Announc. 2015 Aug 20;3(4). pii: e00942-15. doi: 10.1128/genomeA.00942-15.

15.

The role of flagella in Clostridium difficile pathogenicity.

Stevenson E, Minton NP, Kuehne SA.

Trends Microbiol. 2015 May;23(5):275-82. doi: 10.1016/j.tim.2015.01.004. Epub 2015 Feb 4. Review.

PMID:
25659185
16.

Inflammasome activation contributes to interleukin-23 production in response to Clostridium difficile.

Cowardin CA, Kuehne SA, Buonomo EL, Marie CS, Minton NP, Petri WA Jr.

MBio. 2015 Jan 27;6(1). pii: e02386-14. doi: 10.1128/mBio.02386-14.

17.

Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro.

Wasels F, Kuehne SA, Cartman ST, Spigaglia P, Barbanti F, Minton NP, Mastrantonio P.

Antimicrob Agents Chemother. 2015 Mar;59(3):1794-6. doi: 10.1128/AAC.04503-14. Epub 2014 Dec 22.

18.

Comparison of culture based methods for the isolation of Clostridium difficile from stool samples in a research setting.

Lister M, Stevenson E, Heeg D, Minton NP, Kuehne SA.

Anaerobe. 2014 Aug;28:226-9. doi: 10.1016/j.anaerobe.2014.07.003. Epub 2014 Jul 16.

19.

The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection.

Barketi-Klai A, Monot M, Hoys S, Lambert-Bordes S, Kuehne SA, Minton N, Collignon A, Dupuy B, Kansau I.

PLoS One. 2014 May 19;9(5):e96876. doi: 10.1371/journal.pone.0096876. eCollection 2014.

20.

A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa.

Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER, Searle MS, Heeb S, Rao J, Kulkarni RV.

Nucleic Acids Res. 2014 Jun;42(11):6811-25. doi: 10.1093/nar/gku309. Epub 2014 Apr 29.

21.

Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo.

Heap JT, Theys J, Ehsaan M, Kubiak AM, Dubois L, Paesmans K, Van Mellaert L, Knox R, Kuehne SA, Lambin P, Minton NP.

Oncotarget. 2014 Apr 15;5(7):1761-9.

22.

The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain.

Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP.

PLoS One. 2013 Sep 23;8(9):e73026. doi: 10.1371/journal.pone.0073026. eCollection 2013.

23.

Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain.

Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP.

J Infect Dis. 2014 Jan 1;209(1):83-6. doi: 10.1093/infdis/jit426. Epub 2013 Aug 9.

24.

Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s).

Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP, Allan E, Bajaj-Elliott M.

PLoS One. 2013 Jul 29;8(7):e69846. doi: 10.1371/journal.pone.0069846. Print 2013.

25.

Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile.

Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M.

J Bacteriol. 2013 Feb;195(3):545-55. doi: 10.1128/JB.01980-12. Epub 2012 Nov 21.

26.

ClosTron-mediated engineering of Clostridium.

Kuehne SA, Minton NP.

Bioengineered. 2012 Jul-Aug;3(4):247-54. doi: 10.4161/bioe.21004. Epub 2012 Jul 1.

27.

Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae.

Kong HS, Roberts DP, Patterson CD, Kuehne SA, Heeb S, Lakshman DK, Lydon J.

Phytopathology. 2012 Jun;102(6):575-87. doi: 10.1094/PHYTO-09-11-0267.

28.

ClosTron-mediated engineering of Clostridium.

Kuehne SA, Heap JT, Cooksley CM, Cartman ST, Minton NP.

Methods Mol Biol. 2011;765:389-407. doi: 10.1007/978-1-61779-197-0_23.

PMID:
21815105
29.

Both, toxin A and toxin B, are important in Clostridium difficile infection.

Kuehne SA, Cartman ST, Minton NP.

Gut Microbes. 2011 Jul-Aug;2(4):252-5. doi: 10.4161/gmic.2.4.16109. Epub 2011 Jul 1. No abstract available.

30.

The role of toxin A and toxin B in Clostridium difficile infection.

Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP.

Nature. 2010 Oct 7;467(7316):711-3. doi: 10.1038/nature09397. Epub 2010 Sep 15.

31.

ClosTron-targeted mutagenesis.

Heap JT, Cartman ST, Kuehne SA, Cooksley C, Minton NP.

Methods Mol Biol. 2010;646:165-82. doi: 10.1007/978-1-60327-365-7_11.

PMID:
20597009
32.

The emergence of 'hypervirulence' in Clostridium difficile.

Cartman ST, Heap JT, Kuehne SA, Cockayne A, Minton NP.

Int J Med Microbiol. 2010 Aug;300(6):387-95. doi: 10.1016/j.ijmm.2010.04.008. Epub 2010 May 23. Review.

PMID:
20547099
33.

The ClosTron: Mutagenesis in Clostridium refined and streamlined.

Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP.

J Microbiol Methods. 2010 Jan;80(1):49-55. doi: 10.1016/j.mimet.2009.10.018. Epub 2009 Nov 3.

PMID:
19891996
34.

The Helicobacter pylori anti-sigma factor FlgM is predominantly cytoplasmic and cooperates with the flagellar basal body protein FlhA.

Rust M, Borchert S, Niehus E, Kuehne SA, Gripp E, Bajceta A, McMurry JL, Suerbaum S, Hughes KT, Josenhans C.

J Bacteriol. 2009 Aug;191(15):4824-34. doi: 10.1128/JB.00018-09. Epub 2009 May 22.

35.

Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site.

Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, Haas D, Cámara M, Williams P.

J Mol Biol. 2006 Feb 3;355(5):1026-36. Epub 2005 Dec 1.

PMID:
16359708

Supplemental Content

Loading ...
Support Center