Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.

Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them.

Krysan PJ, Colcombet J.

Front Plant Sci. 2018 Nov 27;9:1674. doi: 10.3389/fpls.2018.01674. eCollection 2018. Review.

2.

A Förster resonance energy transfer sensor for live-cell imaging of mitogen-activated protein kinase activity in Arabidopsis.

Zaman N, Seitz K, Kabir M, George-Schreder LS, Shepstone I, Liu Y, Zhang S, Krysan PJ.

Plant J. 2019 Mar;97(5):970-983. doi: 10.1111/tpj.14164. Epub 2019 Jan 22.

PMID:
30444549
3.

Recombination between T-DNA insertions to cause chromosomal deletions in Arabidopsis is a rare phenomenon.

Seagrist JF, Su SH, Krysan PJ.

PeerJ. 2018 Jul 3;6:e5076. doi: 10.7717/peerj.5076. eCollection 2018.

4.

A simple microfluidic device for live cell imaging of Arabidopsis cotyledons, leaves, and seedlings.

Vang S, Seitz K, Krysan PJ.

Biotechniques. 2018 Jun;64(6):255-261. doi: 10.2144/btn-2018-0044.

5.

A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

Su SH, Krysan PJ.

Plant J. 2016 Dec;88(5):867-878. doi: 10.1111/tpj.13292. Epub 2016 Oct 18.

6.

iTILLING: personalized mutation screening.

Bush SM, Krysan PJ.

Methods Mol Biol. 2014;1062:175-91. doi: 10.1007/978-1-62703-580-4_9.

PMID:
24057366
7.

Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture.

Forde BG, Cutler SR, Zaman N, Krysan PJ.

Plant J. 2013 Jul;75(1):1-10. doi: 10.1111/tpj.12201. Epub 2013 May 6.

8.

Genetic analysis of the Arabidopsis protein kinases MAP3Kε1 and MAP3Kε2 indicates roles in cell expansion and embryo development.

Chaiwongsar S, Strohm AK, Su SH, Krysan PJ.

Front Plant Sci. 2012 Oct 10;3:228. doi: 10.3389/fpls.2012.00228. eCollection 2012.

9.

Ice-Cap: a method for growing Arabidopsis and tomato plants in 96-well plates for high-throughput genotyping.

Su SH, Clark KA, Gibbs NM, Bush SM, Krysan PJ.

J Vis Exp. 2011 Nov 9;(57). pii: 3280. doi: 10.3791/3280.

10.

Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines.

Clark KA, Krysan PJ.

Plant J. 2010 Dec;64(6):990-1001. doi: 10.1111/j.1365-313X.2010.04386.x. Epub 2010 Nov 17.

11.

iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis.

Bush SM, Krysan PJ.

Plant Physiol. 2010 Sep;154(1):25-35. doi: 10.1104/pp.110.159897. Epub 2010 Jul 28.

13.
14.

The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline.

Woody ST, Austin-Phillips S, Amasino RM, Krysan PJ.

J Plant Res. 2007 Jan;120(1):157-65. Epub 2006 Dec 21.

PMID:
17186119
15.

MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants.

Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ.

Plant Physiol. 2007 Feb;143(2):661-9. Epub 2006 Dec 1.

16.

The protein kinase genes MAP3K epsilon 1 and MAP3K epsilon 2 are required for pollen viability in Arabidopsis thaliana.

Chaiwongsar S, Otegui MS, Jester PJ, Monson SS, Krysan PJ.

Plant J. 2006 Oct;48(2):193-205. Epub 2006 Sep 12.

17.

Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis.

Krysan PJ, Young JC, Jester PJ, Monson S, Copenhaver G, Preuss D, Sussman MR.

OMICS. 2002;6(2):163-74.

PMID:
12143962
18.
19.

Efficient screening of Arabidopsis T-DNA insertion lines using degenerate primers.

Young JC, Krysan PJ, Sussman MR.

Plant Physiol. 2001 Feb;125(2):513-8.

20.

The Arabidopsis knockout facility at the University of Wisconsin-Madison.

Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S.

Plant Physiol. 2000 Dec;124(4):1465-7. No abstract available.

21.

Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters.

Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR.

Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13979-84.

22.

T-DNA as an insertional mutagen in Arabidopsis.

Krysan PJ, Young JC, Sussman MR.

Plant Cell. 1999 Dec;11(12):2283-90. Review. No abstract available.

23.

Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport.

Krysan PJ, Young JC, Tax F, Sussman MR.

Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8145-50.

24.

Epstein-Barr virus-based vectors that replicate in rodent cells.

Krysan PJ, Calos MP.

Gene. 1993 Dec 22;136(1-2):137-43.

PMID:
8293997
25.
26.

Autonomous DNA replication in human cells is affected by the size and the source of the DNA.

Heinzel SS, Krysan PJ, Tran CT, Calos MP.

Mol Cell Biol. 1991 Apr;11(4):2263-72.

27.
28.

Isolation of human sequences that replicate autonomously in human cells.

Krysan PJ, Haase SB, Calos MP.

Mol Cell Biol. 1989 Mar;9(3):1026-33.

29.

Improved EBV shuttle vectors.

Haase SB, Heinzel SS, Krysan PJ, Calos MP.

Mutat Res. 1989 Mar-May;220(2-3):125-32.

PMID:
2538736
30.

Use of simian virus 40 replication to amplify Epstein-Barr virus shuttle vectors in human cells.

Heinzel SS, Krysan PJ, Calos MP, DuBridge RB.

J Virol. 1988 Oct;62(10):3738-46.

Supplemental Content

Loading ...
Support Center