Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.

Blaby-Haas CE, Castruita M, Fitz-Gibbon ST, Kropat J, Merchant SS.

Metallomics. 2016 Jul 13;8(7):679-91. doi: 10.1039/c6mt00063k.

2.

Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle.

Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M.

Plant Physiol. 2015 Dec;169(4):2730-43. doi: 10.1104/pp.15.00861. Epub 2015 Oct 8.

3.

Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles.

Reyes VC, Spitzmiller MR, Hong-Hermesdorf A, Kropat J, Damoiseaux RD, Merchant SS, Mahendra S.

Environ Toxicol Chem. 2016 May;35(5):1148-58. doi: 10.1002/etc.3254. Epub 2016 Mar 9.

4.

Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas.

Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS.

Nat Chem Biol. 2015 Mar;11(3):235. doi: 10.1038/nchembio0315-235c. No abstract available.

5.

Copper economy in Chlamydomonas: prioritized allocation and reallocation of copper to respiration vs. photosynthesis.

Kropat J, Gallaher SD, Urzica EI, Nakamoto SS, Strenkert D, Tottey S, Mason AZ, Merchant SS.

Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2644-51. doi: 10.1073/pnas.1422492112. Epub 2015 Feb 2.

6.

Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas.

Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS.

Nat Chem Biol. 2014 Dec;10(12):1034-42. doi: 10.1038/nchembio.1662. Epub 2014 Oct 26. Erratum in: Nat Chem Biol. 2015 Mar;11(3):235.

7.

Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism.

Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS.

Plant Cell. 2014 Apr;26(4):1410-1435. Epub 2014 Apr 18.

8.

Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant.

Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS.

Plant Cell. 2013 Nov;25(11):4305-23. doi: 10.1105/tpc.113.117580. Epub 2013 Nov 26.

9.

Remodeling of membrane lipids in iron-starved Chlamydomonas.

Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS.

J Biol Chem. 2013 Oct 18;288(42):30246-58. doi: 10.1074/jbc.M113.490425. Epub 2013 Aug 27.

10.

Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii.

Malasarn D, Kropat J, Hsieh SI, Finazzi G, Casero D, Loo JA, Pellegrini M, Wollman FA, Merchant SS.

J Biol Chem. 2013 Apr 12;288(15):10672-83. doi: 10.1074/jbc.M113.455105. Epub 2013 Feb 25.

11.

Sphingolipid signaling mediates iron toxicity.

Lee YJ, Huang X, Kropat J, Henras A, Merchant SS, Dickson RC, Chanfreau GF.

Cell Metab. 2012 Jul 3;16(1):90-6. doi: 10.1016/j.cmet.2012.06.004.

12.

Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii.

Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS.

Plant Cell. 2012 Jun;24(6):2649-65. doi: 10.1105/tpc.112.098962. Epub 2012 Jun 8.

13.

Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas.

Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS.

J Biol Chem. 2012 May 4;287(19):15811-25. doi: 10.1074/jbc.M111.334052. Epub 2012 Mar 8.

14.

TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.

Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J.

Curr Opin Biotechnol. 2012 Jun;23(3):352-63. doi: 10.1016/j.copbio.2011.12.001. Epub 2011 Dec 29. Review.

PMID:
22209109
15.

Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps.

Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS.

Plant Cell. 2011 Apr;23(4):1273-92. doi: 10.1105/tpc.111.084400. Epub 2011 Apr 15.

16.

A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii.

Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D.

Plant J. 2011 Jun;66(5):770-80. doi: 10.1111/j.1365-313X.2011.04537.x. Epub 2011 Mar 21.

17.

A novel component of the disulfide-reducing pathway required for cytochrome c assembly in plastids.

Gabilly ST, Kropat J, Karamoko M, Page MD, Nakamoto SS, Merchant SS, Hamel PP.

Genetics. 2011 Mar;187(3):793-802. doi: 10.1534/genetics.110.125369. Epub 2011 Jan 10.

18.

The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains.

Sommer F, Kropat J, Malasarn D, Grossoehme NE, Chen X, Giedroc DP, Merchant SS.

Plant Cell. 2010 Dec;22(12):4098-113. doi: 10.1105/tpc.110.080069. Epub 2010 Dec 3.

19.

Zinc binding drives sheet formation by the SAM domain of diacylglycerol kinase δ.

Knight MJ, Joubert MK, Plotkowski ML, Kropat J, Gingery M, Sakane F, Merchant SS, Bowie JU.

Biochemistry. 2010 Nov 9;49(44):9667-76. doi: 10.1021/bi101261x.

20.

CCS5, a thioredoxin-like protein involved in the assembly of plastid c-type cytochromes.

Gabilly ST, Dreyfuss BW, Karamoko M, Corvest V, Kropat J, Page MD, Merchant SS, Hamel PP.

J Biol Chem. 2010 Sep 24;285(39):29738-49. doi: 10.1074/jbc.M109.099069. Epub 2010 Jul 13.

21.

A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life.

Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V.

BMC Genomics. 2009 Oct 12;10:470. doi: 10.1186/1471-2164-10-470.

22.

Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation.

Page MD, Kropat J, Hamel PP, Merchant SS.

Plant Cell. 2009 Mar;21(3):928-43. doi: 10.1105/tpc.108.064907. Epub 2009 Mar 24.

23.

Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii.

Allen MD, Kropat J, Merchant SS.

Photochem Photobiol. 2008 Nov-Dec;84(6):1336-42. doi: 10.1111/j.1751-1097.2008.00440.x.

PMID:
19067954
24.

A ferroxidase encoded by FOX1 contributes to iron assimilation under conditions of poor iron nutrition in Chlamydomonas.

Chen JC, Hsieh SI, Kropat J, Merchant SS.

Eukaryot Cell. 2008 Mar;7(3):541-5. doi: 10.1128/EC.00463-07. Epub 2008 Feb 1.

26.
27.

Between a rock and a hard place: trace element nutrition in Chlamydomonas.

Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM.

Biochim Biophys Acta. 2006 Jul;1763(7):578-94. Epub 2006 Apr 26. Review.

28.

A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element.

Kropat J, Tottey S, Birkenbihl RP, Depège N, Huijser P, Merchant S.

Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18730-5. Epub 2005 Dec 13.

30.

Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.

La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S.

Eukaryot Cell. 2002 Oct;1(5):736-57.

31.

Possible role for molecular chaperones in assembly and repair of photosystem II.

Schroda M, Kropat J, Oster U, Rüdiger W, Vallon O, Wollman FA, Beck CF.

Biochem Soc Trans. 2001 Aug;29(Pt 4):413-8. Review.

PMID:
11497999
33.

Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes.

Kropat J, Oster U, Rüdiger W, Beck CF.

Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14168-72.

34.

Heat shock and light activation of a Chlamydomonas HSP70 gene are mediated by independent regulatory pathways.

Kropat J, von Gromoff ED, Müller FW, Beck CF.

Mol Gen Genet. 1995 Oct 25;248(6):727-34.

PMID:
7476876

Supplemental Content

Loading ...
Support Center