Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 93

1.

Systematic analysis of the Myxococcus xanthus developmental gene regulatory network supports posttranslational regulation of FruA by C-signaling.

Saha S, Patra P, Igoshin O, Kroos L.

Mol Microbiol. 2019 Jun;111(6):1732-1752. doi: 10.1111/mmi.14249. Epub 2019 Apr 6.

PMID:
30895656
2.

Ultrasensitive Response of Developing Myxococcus xanthus to the Addition of Nutrient Medium Correlates with the Level of MrpC.

Hoang Y, Kroos L.

J Bacteriol. 2018 Oct 23;200(22). pii: e00456-18. doi: 10.1128/JB.00456-18. Print 2018 Nov 15.

3.

Interaction of intramembrane metalloprotease SpoIVFB with substrate Pro-σK.

Halder S, Parrell D, Whitten D, Feig M, Kroos L.

Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10677-E10686. doi: 10.1073/pnas.1711467114. Epub 2017 Nov 27.

4.

Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.

Parrell D, Zhang Y, Olenic S, Kroos L.

J Bacteriol. 2017 Sep 5;199(19). pii: e00381-17. doi: 10.1128/JB.00381-17. Print 2017 Oct 1.

5.

The dev Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development.

Rajagopalan R, Kroos L.

J Bacteriol. 2017 Apr 25;199(10). pii: e00788-16. doi: 10.1128/JB.00788-16. Print 2017 May 15.

6.

Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development.

Kroos L.

Trends Genet. 2017 Jan;33(1):3-15. doi: 10.1016/j.tig.2016.10.006. Epub 2016 Dec 2. Review.

7.

Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK.

Zhang Y, Halder S, Kerr RA, Parrell D, Ruotolo B, Kroos L.

J Biol Chem. 2016 May 6;291(19):10347-62. doi: 10.1074/jbc.M116.715508. Epub 2016 Mar 7.

8.

devI is an evolutionarily young negative regulator of Myxococcus xanthus development.

Rajagopalan R, Wielgoss S, Lippert G, Velicer GJ, Kroos L.

J Bacteriol. 2015 Apr;197(7):1249-62. doi: 10.1128/JB.02542-14. Epub 2015 Feb 2.

9.

Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus.

Robinson M, Son B, Kroos D, Kroos L.

BMC Genomics. 2014 Dec 16;15:1123. doi: 10.1186/1471-2164-15-1123.

10.

Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development.

Campbell A, Viswanathan P, Barrett T, Son B, Saha S, Kroos L.

J Bacteriol. 2015 Jan;197(2):240-51. doi: 10.1128/JB.02310-14. Epub 2014 Oct 27.

11.

Nutrient-regulated proteolysis of MrpC halts expression of genes important for commitment to sporulation during Myxococcus xanthus development.

Rajagopalan R, Kroos L.

J Bacteriol. 2014 Aug;196(15):2736-47. doi: 10.1128/JB.01692-14. Epub 2014 May 16.

12.

Structure of bacterial transcription factor SpoIIID and evidence for a novel mode of DNA binding.

Chen B, Himes P, Liu Y, Zhang Y, Lu Z, Liu A, Yan H, Kroos L.

J Bacteriol. 2014 Jun;196(12):2131-42. doi: 10.1128/JB.01486-13. Epub 2014 Feb 28.

13.

Regulated proteolysis in bacterial development.

Konovalova A, Søgaard-Andersen L, Kroos L.

FEMS Microbiol Rev. 2014 May;38(3):493-522. doi: 10.1111/1574-6976.12050. Epub 2013 Dec 19. Review.

14.

Biochemical and structural insights into intramembrane metalloprotease mechanisms.

Kroos L, Akiyama Y.

Biochim Biophys Acta. 2013 Dec;1828(12):2873-85. doi: 10.1016/j.bbamem.2013.03.032. Review.

15.

Residues in conserved loops of intramembrane metalloprotease SpoIVFB interact with residues near the cleavage site in pro-σK.

Zhang Y, Luethy PM, Zhou R, Kroos L.

J Bacteriol. 2013 Nov;195(21):4936-46. doi: 10.1128/JB.00807-13. Epub 2013 Aug 30.

16.

Features of Pro-σK important for cleavage by SpoIVFB, an intramembrane metalloprotease.

Zhou R, Chen K, Xiang X, Gu L, Kroos L.

J Bacteriol. 2013 Jun;195(12):2793-806. doi: 10.1128/JB.00229-13. Epub 2013 Apr 12.

17.

Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development.

Son B, Liu Y, Kroos L.

J Bacteriol. 2011 Jun;193(11):2756-66. doi: 10.1128/JB.00205-11. Epub 2011 Mar 25.

18.

Substrate specificity of SpoIIGA, a signal-transducing aspartic protease in Bacilli.

Imamura D, Kuwana R, Kroos L, Feig M, Takamatsu H, Watabe K.

J Biochem. 2011 Jun;149(6):665-71. doi: 10.1093/jb/mvr027. Epub 2011 Feb 28.

19.

Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development.

Lee JS, Son B, Viswanathan P, Luethy PM, Kroos L.

J Bacteriol. 2011 Apr;193(7):1681-9. doi: 10.1128/JB.01541-10. Epub 2011 Jan 21.

20.

Myxobacteria, polarity, and multicellular morphogenesis.

Kaiser D, Robinson M, Kroos L.

Cold Spring Harb Perspect Biol. 2010 Aug;2(8):a000380. doi: 10.1101/cshperspect.a000380. Epub 2010 Jul 7. Review.

21.

Two regions of Bacillus subtilis transcription factor SpoIIID allow a monomer to bind DNA.

Himes P, McBryant SJ, Kroos L.

J Bacteriol. 2010 Mar;192(6):1596-606. doi: 10.1128/JB.01506-09. Epub 2010 Jan 8.

22.

Intramembrane proteolytic cleavage of a membrane-tethered transcription factor by a metalloprotease depends on ATP.

Zhou R, Cusumano C, Sui D, Garavito RM, Kroos L.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16174-9. doi: 10.1073/pnas.0901455106. Epub 2009 Sep 2.

23.

Who's the boss? One-way conversations between bacteria.

Kroos L.

Dev Cell. 2009 Aug;17(2):155-6. doi: 10.1016/j.devcel.2009.07.021.

24.

Bacterial development: evidence for very short umbilical cords.

Kroos L.

Curr Biol. 2009 Jun 9;19(11):R452-3. doi: 10.1016/j.cub.2009.04.046.

25.

Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development.

Mittal S, Kroos L.

J Bacteriol. 2009 Apr;191(8):2753-63. doi: 10.1128/JB.01818-08. Epub 2009 Feb 6.

26.

Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens.

Harry KH, Zhou R, Kroos L, Melville SB.

J Bacteriol. 2009 Apr;191(8):2728-42. doi: 10.1128/JB.01839-08. Epub 2009 Feb 6.

27.

A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression.

Mittal S, Kroos L.

Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1965-70. doi: 10.1073/pnas.0808516106. Epub 2009 Jan 29.

28.

Bacterial development in the fast lane.

Kroos L.

J Bacteriol. 2008 Jul;190(13):4373-6. doi: 10.1128/JB.00580-08. Epub 2008 May 9. No abstract available.

29.

Evidence that the Bacillus subtilis SpoIIGA protein is a novel type of signal-transducing aspartic protease.

Imamura D, Zhou R, Feig M, Kroos L.

J Biol Chem. 2008 May 30;283(22):15287-99. doi: 10.1074/jbc.M708962200. Epub 2008 Mar 31.

30.
31.
32.

Maintaining the transcription factor SpoIIID level late during sporulation causes spore defects in Bacillus subtilis.

Wang L, Perpich J, Driks A, Kroos L.

J Bacteriol. 2007 Oct;189(20):7302-9. Epub 2007 Aug 10.

33.

Combinatorial regulation of genes essential for Myxococcus xanthus development involves a response regulator and a LysR-type regulator.

Viswanathan P, Ueki T, Inouye S, Kroos L.

Proc Natl Acad Sci U S A. 2007 May 8;104(19):7969-74. Epub 2007 Apr 30.

34.

Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats.

Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L.

J Bacteriol. 2007 May;189(10):3738-50. Epub 2007 Mar 16.

35.
36.

Role of sigmaD in regulating genes and signals during Myxococcus xanthus development.

Viswanathan P, Singer M, Kroos L.

J Bacteriol. 2006 May;188(9):3246-56.

39.

Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae.

Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS.

Eukaryot Cell. 2005 Aug;4(8):1364-74.

41.

Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development.

Kroos L.

Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2681-2. Epub 2005 Feb 14. No abstract available.

42.
45.
47.
48.

Prokaryotic development: emerging insights.

Kroos L, Maddock JR.

J Bacteriol. 2003 Feb;185(4):1128-46. Review. No abstract available.

50.

A mutation in GerE that affects cotC promoter activation in Bacillus subtilis.

Crater DL, Wade KH, Resnekov O, Ichikawa HT, Kroos L, Brannigan JA, Moran CP Jr.

Biochim Biophys Acta. 2002 Jun 7;1576(1-2):30-8.

PMID:
12031481

Supplemental Content

Support Center