Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37


Reciprocal Regulation of PASTA Kinase Signaling by Differential Modification.

Labbe BD, Hall CL, Kellogg SL, Chen Y, Koehn O, Pickrum AM, Mirza SP, Kristich CJ.

J Bacteriol. 2019 Apr 24;201(10). pii: e00016-19. doi: 10.1128/JB.00016-19. Print 2019 May 15.


Sortase-Dependent Proteins Promote Gastrointestinal Colonization by Enterococci.

Banla LI, Pickrum AM, Hayward M, Kristich CJ, Salzman NH.

Infect Immun. 2019 Apr 23;87(5). pii: e00853-18. doi: 10.1128/IAI.00853-18. Print 2019 Mar.


Colonization of the mammalian intestinal tract by enterococci.

Banla LI, Salzman NH, Kristich CJ.

Curr Opin Microbiol. 2019 Feb;47:26-31. doi: 10.1016/j.mib.2018.10.005. Epub 2018 Nov 13. Review.


Ceftriaxone Administration Disrupts Intestinal Homeostasis, Mediating Noninflammatory Proliferation and Dissemination of Commensal Enterococci.

Chakraborty R, Lam V, Kommineni S, Stromich J, Hayward M, Kristich CJ, Salzman NH.

Infect Immun. 2018 Nov 20;86(12). pii: e00674-18. doi: 10.1128/IAI.00674-18. Print 2018 Dec.


Exploring bioactive peptides from bacterial secretomes using PepSAVI-MS: identification and characterization of Bac-21 from Enterococcus faecalis pPD1.

Kirkpatrick CL, Parsley NC, Bartges TE, Wing CE, Kommineni S, Kristich CJ, Salzman NH, Patrie SM, Hicks LM.

Microb Biotechnol. 2018 Sep;11(5):943-951. doi: 10.1111/1751-7915.13299. Epub 2018 Jul 16.


Convergence of PASTA Kinase and Two-Component Signaling in Response to Cell Wall Stress in Enterococcus faecalis.

Kellogg SL, Kristich CJ.

J Bacteriol. 2018 May 24;200(12). pii: e00086-18. doi: 10.1128/JB.00086-18. Print 2018 Jun 15.


Modulators of Enterococcus faecalis Cell Envelope Integrity and Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal Tract.

Banla IL, Kommineni S, Hayward M, Rodrigues M, Palmer KL, Salzman NH, Kristich CJ.

Infect Immun. 2017 Dec 19;86(1). pii: e00381-17. doi: 10.1128/IAI.00381-17. Print 2018 Jan.


Extracellular SalB Contributes to Intrinsic Cephalosporin Resistance and Cell Envelope Integrity in Enterococcus faecalis.

Djorić D, Kristich CJ.

J Bacteriol. 2017 Oct 31;199(23). pii: e00392-17. doi: 10.1128/JB.00392-17. Print 2017 Dec 1.


Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis.

Labbe BD, Kristich CJ.

J Bacteriol. 2017 Oct 3;199(21). pii: e00363-17. doi: 10.1128/JB.00363-17. Print 2017 Nov 1.


Structure and Dimerization of IreB, a Negative Regulator of Cephalosporin Resistance in Enterococcus faecalis.

Hall CL, Lytle BL, Jensen D, Hoff JS, Peterson FC, Volkman BF, Kristich CJ.

J Mol Biol. 2017 Jul 21;429(15):2324-2336. doi: 10.1016/j.jmb.2017.05.019. Epub 2017 May 24.


Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium.

Kellogg SL, Little JL, Hoff JS, Kristich CJ.

Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: e02461-16. doi: 10.1128/AAC.02461-16. Print 2017 May.


Harnessing bacteriocin biology as targeted therapy in the GI tract.

Kommineni S, Kristich CJ, Salzman NH.

Gut Microbes. 2016 Nov;7(6):512-517. Epub 2016 Sep 13.


Thymidylate Limitation Potentiates Cephalosporin Activity toward Enterococci via an Exopolysaccharide-Based Mechanism.

Hoff JS, Kristich CJ.

ACS Chem Biol. 2016 Jun 17;11(6):1561-8. doi: 10.1021/acschembio.5b01041. Epub 2016 Mar 23.


Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis.

Kellogg SL, Kristich CJ.

J Bacteriol. 2016 Mar 31;198(8):1326-36. doi: 10.1128/JB.00995-15. Print 2016 Apr.


Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract.

Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, Cao Y, Bousounis P, Kristich CJ, Salzman NH.

Nature. 2015 Oct 29;526(7575):719-22. doi: 10.1038/nature15524. Epub 2015 Oct 19.


Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system.

Djorić D, Kristich CJ.

Antimicrob Agents Chemother. 2015 Jan;59(1):159-69. doi: 10.1128/AAC.03984-14. Epub 2014 Oct 20.


Enterococcal Infection—Treatment and Antibiotic Resistance.

Kristich CJ, Rice LB, Arias CA.

In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary; 2014-.
2014 Feb 6.


Genetic basis for vancomycin-enhanced cephalosporin susceptibility in vancomycin-resistant enterococci revealed using counterselection with dominant-negative thymidylate synthase.

Kristich CJ, Djorić D, Little JL.

Antimicrob Agents Chemother. 2014;58(3):1556-64. doi: 10.1128/AAC.02001-13. Epub 2013 Dec 23.


Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system.

Snyder H, Kellogg SL, Skarda LM, Little JL, Kristich CJ.

Antimicrob Agents Chemother. 2014;58(2):957-65. doi: 10.1128/AAC.01919-13. Epub 2013 Nov 25.


IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis.

Hall CL, Tschannen M, Worthey EA, Kristich CJ.

Antimicrob Agents Chemother. 2013 Dec;57(12):6179-86. doi: 10.1128/AAC.01472-13. Epub 2013 Sep 30.


A Rex family transcriptional repressor influences H2O2 accumulation by Enterococcus faecalis.

Vesić D, Kristich CJ.

J Bacteriol. 2013 Apr;195(8):1815-24. doi: 10.1128/JB.02135-12. Epub 2013 Feb 15.


Mutations in the β subunit of RNA polymerase alter intrinsic cephalosporin resistance in Enterococci.

Kristich CJ, Little JL.

Antimicrob Agents Chemother. 2012 Apr;56(4):2022-7. doi: 10.1128/AAC.06077-11. Epub 2012 Jan 30.


MurAA is required for intrinsic cephalosporin resistance of Enterococcus faecalis.

Vesić D, Kristich CJ.

Antimicrob Agents Chemother. 2012 May;56(5):2443-51. doi: 10.1128/AAC.05984-11. Epub 2012 Jan 30.


Reciprocal regulation of cephalosporin resistance in Enterococcus faecalis.

Kristich CJ, Little JL, Hall CL, Hoff JS.

mBio. 2011 Nov 1;2(6):e00199-11. doi: 10.1128/mBio.00199-11. Print 2011.


Functional genomics of Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome.

Ballering KS, Kristich CJ, Grindle SM, Oromendia A, Beattie DT, Dunny GM.

J Bacteriol. 2009 Apr;191(8):2806-14. doi: 10.1128/JB.01688-08. Epub 2009 Feb 13.


Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis genome.

Kristich CJ, Nguyen VT, Le T, Barnes AM, Grindle S, Dunny GM.

Appl Environ Microbiol. 2008 Jun;74(11):3377-86. doi: 10.1128/AEM.02665-07. Epub 2008 Apr 11.


A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence.

Kristich CJ, Wells CL, Dunny GM.

Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3508-13. Epub 2007 Feb 20.


Esp-independent biofilm formation by Enterococcus faecalis.

Kristich CJ, Li YH, Cvitkovitch DG, Dunny GM.

J Bacteriol. 2004 Jan;186(1):154-63.


Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis.

Kristich CJ, Ordal GW.

J Biol Chem. 2002 Jul 12;277(28):25356-62. Epub 2002 May 13.


CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis.

Kirby JR, Kristich CJ, Saulmon MM, Zimmer MA, Garrity LF, Zhulin IB, Ordal GW.

Mol Microbiol. 2001 Nov;42(3):573-85.


CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis.

Kirby JR, Saulmon MM, Kristich CJ, Ordal GW.

J Biol Chem. 1999 Apr 16;274(16):11092-100.


Methanol production during chemotaxis to amino acids in Bacillus subtilis.

Kirby JR, Kristich CJ, Feinberg SL, Ordal GW.

Mol Microbiol. 1997 May;24(4):869-78.

Supplemental Content

Loading ...
Support Center