Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 159

1.

Cardiometabolic Effects of a Workplace Cycling Intervention.

Peterman JE, Morris KL, Kram R, Byrnes WC.

J Phys Act Health. 2019 Jun 27;16(7):547-555. doi: 10.1123/jpah.2018-0062.

PMID:
31149869
2.

Do poles save energy during steep uphill walking?

Giovanelli N, Sulli M, Kram R, Lazzer S.

Eur J Appl Physiol. 2019 Jul;119(7):1557-1563. doi: 10.1007/s00421-019-04145-2. Epub 2019 Apr 24.

PMID:
31020400
3.

Preferred walking speed on rough terrain: is it all about energetics?

Gast K, Kram R, Riemer R.

J Exp Biol. 2019 Apr 30;222(Pt 9). pii: jeb185447. doi: 10.1242/jeb.185447.

4.

Extrapolating Metabolic Savings in Running: Implications for Performance Predictions.

Kipp S, Kram R, Hoogkamer W.

Front Physiol. 2019 Feb 11;10:79. doi: 10.3389/fphys.2019.00079. eCollection 2019.

5.

Does Metabolic Rate Increase Linearly with Running Speed in all Distance Runners?

Batliner ME, Kipp S, Grabowski AM, Kram R, Byrnes WC.

Sports Med Int Open. 2017 Nov 17;2(1):E1-E8. doi: 10.1055/s-0043-122068. eCollection 2018 Jan.

6.

The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study.

Hoogkamer W, Kipp S, Kram R.

Sports Med. 2019 Jan;49(1):133-143. doi: 10.1007/s40279-018-1024-z.

PMID:
30460454
7.

Level, uphill and downhill running economy values are strongly inter-correlated.

Breiner TJ, Ortiz ALR, Kram R.

Eur J Appl Physiol. 2019 Jan;119(1):257-264. doi: 10.1007/s00421-018-4021-x. Epub 2018 Oct 24.

PMID:
30357515
8.

Last Word on Viewpoint: Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance.

Beck ON, Kipp S, Byrnes WC, Kram R.

J Appl Physiol (1985). 2018 Aug 1;125(2):675. doi: 10.1152/japplphysiol.00356.2018. No abstract available.

9.

What determines the metabolic cost of human running across a wide range of velocities?

Kipp S, Grabowski AM, Kram R.

J Exp Biol. 2018 Sep 24;221(Pt 18). pii: jeb184218. doi: 10.1242/jeb.184218.

10.

Contributions of metabolic and temporal costs to human gait selection.

Summerside EM, Kram R, Ahmed AA.

J R Soc Interface. 2018 Jun;15(143). pii: 20180197. doi: 10.1098/rsif.2018.0197.

11.

Comparison of running and cycling economy in runners, cyclists, and triathletes.

Swinnen W, Kipp S, Kram R.

Eur J Appl Physiol. 2018 Jul;118(7):1331-1338. doi: 10.1007/s00421-018-3865-4. Epub 2018 Apr 16.

PMID:
29663075
12.

Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance.

Beck ON, Kipp S, Byrnes WC, Kram R.

J Appl Physiol (1985). 2018 Aug 1;125(2):672-674. doi: 10.1152/japplphysiol.00940.2017. Epub 2018 Feb 15. No abstract available.

13.

Calculating metabolic energy expenditure across a wide range of exercise intensities: the equation matters.

Kipp S, Byrnes WC, Kram R.

Appl Physiol Nutr Metab. 2018 Jun;43(6):639-642. doi: 10.1139/apnm-2017-0781. Epub 2018 Feb 5.

PMID:
29401411
14.

Correction to: A Comparison of the Energetic Cost of Running in Marathon Racing Shoes.

Hoogkamer W, Kipp S, Frank JH, Farina EM, Luo G, Kram R.

Sports Med. 2018 Jun;48(6):1521-1522. doi: 10.1007/s40279-017-0840-x.

15.

A Comparison of the Energetic Cost of Running in Marathon Racing Shoes.

Hoogkamer W, Kipp S, Frank JH, Farina EM, Luo G, Kram R.

Sports Med. 2018 Apr;48(4):1009-1019. doi: 10.1007/s40279-017-0811-2. Erratum in: Sports Med. 2017 Dec 16;:.

16.

Changing relative crank angle increases the metabolic cost of leg cycling.

Straw AH, Hoogkamer W, Kram R.

Eur J Appl Physiol. 2017 Oct;117(10):2021-2027. doi: 10.1007/s00421-017-3691-0. Epub 2017 Aug 7.

PMID:
28785797
17.

Author's Reply to Candau et al.: Comment on: "How Biomechanical Improvements in Running Economy Could Break the 2-Hour Marathon Barrier".

Hoogkamer W, Kram R, Arellano CJ.

Sports Med. 2017 Nov;47(11):2405-2407. doi: 10.1007/s40279-017-0760-9. No abstract available.

PMID:
28741184
18.

The metabolic costs of walking and running up a 30-degree incline: implications for vertical kilometer foot races.

Ortiz ALR, Giovanelli N, Kram R.

Eur J Appl Physiol. 2017 Sep;117(9):1869-1876. doi: 10.1007/s00421-017-3677-y. Epub 2017 Jul 10.

PMID:
28695271
19.

How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier.

Hoogkamer W, Kram R, Arellano CJ.

Sports Med. 2017 Sep;47(9):1739-1750. doi: 10.1007/s40279-017-0708-0. Review.

PMID:
28255937
20.

Altered Running Economy Directly Translates to Altered Distance-Running Performance.

Hoogkamer W, Kipp S, Spiering BA, Kram R.

Med Sci Sports Exerc. 2016 Nov;48(11):2175-2180.

PMID:
27327023
21.

Ground reaction forces during steeplechase hurdling and waterjumps.

Kipp S, Taboga P, Kram R.

Sports Biomech. 2017 Jun;16(2):152-165. doi: 10.1080/14763141.2016.1212917. Epub 2016 Sep 5.

PMID:
27592823
22.

Pedelecs as a physically active transportation mode.

Peterman JE, Morris KL, Kram R, Byrnes WC.

Eur J Appl Physiol. 2016 Aug;116(8):1565-73. doi: 10.1007/s00421-016-3408-9. Epub 2016 Jun 14.

PMID:
27299435
23.

Motor-Driven (Passive) Cycling: A Potential Physical Inactivity Countermeasure?

Peterman JE, Wright KP Jr, Melanson EL, Kram R, Byrnes WC.

Med Sci Sports Exerc. 2016 Sep;48(9):1821-8. doi: 10.1249/MSS.0000000000000947.

24.

Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.

Taboga P, Kram R, Grabowski AM.

J Exp Biol. 2016 Mar;219(Pt 6):851-8. doi: 10.1242/jeb.133488.

25.

A. V. Hill sticks his neck out.

Kram R, Roberts TJ.

J Exp Biol. 2016 Feb;219(Pt 4):468-9. doi: 10.1242/jeb.123372. No abstract available.

26.

Energetics of vertical kilometer foot races; is steeper cheaper?

Giovanelli N, Ortiz AL, Henninger K, Kram R.

J Appl Physiol (1985). 2016 Feb 1;120(3):370-5. doi: 10.1152/japplphysiol.00546.2015. Epub 2015 Nov 25.

27.

Older Runners Retain Youthful Running Economy despite Biomechanical Differences.

Beck ON, Kipp S, Roby JM, Grabowski AM, Kram R, Ortega JD.

Med Sci Sports Exerc. 2016 Apr;48(4):697-704. doi: 10.1249/MSS.0000000000000820.

28.
29.

Effect of running speed and leg prostheses on mediolateral foot placement and its variability.

Arellano CJ, McDermott WJ, Kram R, Grabowski AM.

PLoS One. 2015 Jan 15;10(1):e0115637. doi: 10.1371/journal.pone.0115637. eCollection 2015.

30.

Running for exercise mitigates age-related deterioration of walking economy.

Ortega JD, Beck ON, Roby JM, Turney AL, Kram R.

PLoS One. 2014 Nov 20;9(11):e113471. doi: 10.1371/journal.pone.0113471. eCollection 2014.

31.

Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?

Kehler AL, Hajkova E, Holmberg HC, Kram R.

J Exp Biol. 2014 Nov 1;217(Pt 21):3779-85. doi: 10.1242/jeb.107714. Epub 2014 Sep 4.

32.

Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations.

Ellis RG, Sumner BJ, Kram R.

Gait Posture. 2014 Sep;40(4):594-9. doi: 10.1016/j.gaitpost.2014.07.002. Epub 2014 Jul 10.

PMID:
25096545
33.

Applying the cost of generating force hypothesis to uphill running.

Hoogkamer W, Taboga P, Kram R.

PeerJ. 2014 Jul 15;2:e482. doi: 10.7717/peerj.482. eCollection 2014.

34.

The metabolic cost of human running: is swinging the arms worth it?

Arellano CJ, Kram R.

J Exp Biol. 2014 Jul 15;217(Pt 14):2456-61. doi: 10.1242/jeb.100420.

35.

The kangaroo's tail propels and powers pentapedal locomotion.

O'Connor SM, Dawson TJ, Kram R, Donelan JM.

Biol Lett. 2014 Jul;10(7). pii: 20140381. doi: 10.1098/rsbl.2014.0381.

36.

Partitioning the metabolic cost of human running: a task-by-task approach.

Arellano CJ, Kram R.

Integr Comp Biol. 2014 Dec;54(6):1084-98. doi: 10.1093/icb/icu033. Epub 2014 May 16. Erratum in: Integr Comp Biol. 2017 Jul 1;57(1):169.

37.

A test of the metabolic cost of cushioning hypothesis during unshod and shod running.

Tung KD, Franz JR, Kram R.

Med Sci Sports Exerc. 2014 Feb;46(2):324-9. doi: 10.1249/MSS.0b013e3182a63b81.

PMID:
24441213
38.

Dynamic stability of running: the effects of speed and leg amputations on the maximal Lyapunov exponent.

Look N, Arellano CJ, Grabowski AM, McDermott WJ, Kram R, Bradley E.

Chaos. 2013 Dec;23(4):043131. doi: 10.1063/1.4837095.

PMID:
24387570
39.

Optimal starting block configuration in sprint running; a comparison of biological and prosthetic legs.

Taboga P, Grabowski AM, di Prampero PE, Kram R.

J Appl Biomech. 2014 Jun;30(3):381-9. doi: 10.1123/jab.2013-0113. Epub 2013 Dec 17.

PMID:
24345741
40.

Real-time feedback enhances forward propulsion during walking in old adults.

Franz JR, Maletis M, Kram R.

Clin Biomech (Bristol, Avon). 2014 Jan;29(1):68-74. doi: 10.1016/j.clinbiomech.2013.10.018. Epub 2013 Oct 30.

PMID:
24238977
41.

Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing.

Bartlett JL, Sumner B, Ellis RG, Kram R.

Am J Phys Anthropol. 2014 Jan;153(1):124-31. doi: 10.1002/ajpa.22419. Epub 2013 Nov 12.

PMID:
24218079
42.

Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis.

Franz JR, Kram R.

Gait Posture. 2014 Jan;39(1):135-40. doi: 10.1016/j.gaitpost.2013.06.012. Epub 2013 Jul 11.

43.

Regional citrate anticoagulation for high volume continuous venovenous hemodialysis in surgical patients with high bleeding risk.

Kalb R, Kram R, Morgera S, Slowinski T, Kindgen-Milles D.

Ther Apher Dial. 2013 Apr;17(2):202-12. doi: 10.1111/j.1744-9987.2012.01101.x. Epub 2012 Aug 29.

PMID:
23551677
44.

The metabolic and mechanical costs of step time asymmetry in walking.

Ellis RG, Howard KC, Kram R.

Proc Biol Sci. 2013 Feb 13;280(1756):20122784. doi: 10.1098/rspb.2012.2784. Print 2013 Apr 7.

45.

Advanced age affects the individual leg mechanics of level, uphill, and downhill walking.

Franz JR, Kram R.

J Biomech. 2013 Feb 1;46(3):535-40. doi: 10.1016/j.jbiomech.2012.09.032. Epub 2012 Nov 1.

46.

How does age affect leg muscle activity/coactivity during uphill and downhill walking?

Franz JR, Kram R.

Gait Posture. 2013 Mar;37(3):378-84. doi: 10.1016/j.gaitpost.2012.08.004. Epub 2012 Aug 31.

47.

Taylor's treadmill menagerie.

Kram R.

J Exp Biol. 2012 Jul 15;215(Pt 14):2349-50. doi: 10.1242/jeb.062778. No abstract available.

48.

The role of elastic energy storage and recovery in downhill and uphill running.

Snyder KL, Kram R, Gottschall JS.

J Exp Biol. 2012 Jul 1;215(Pt 13):2283-7. doi: 10.1242/jeb.066332.

49.

Exercise efficiency of low power output cycling.

Reger M, Peterman JE, Kram R, Byrnes WC.

Scand J Med Sci Sports. 2013 Dec;23(6):713-21. doi: 10.1111/j.1600-0838.2012.01448.x. Epub 2012 Mar 29.

PMID:
22462656
50.

Is barefoot running more economical?

Kram R, Franz JR.

Int J Sports Med. 2012 Mar;33(3):249; author reply 250. doi: 10.1055/s-0032-1301923. Epub 2012 Feb 29. No abstract available.

PMID:
22377836

Supplemental Content

Support Center