Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Long non-coding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease and RNAi in fission yeast.

Atkinson S, Marguerat S, Bitton D, Bachand F, Rodriguez-Lopez M, Rallis C, Lemay JF, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bahler J.

RNA. 2018 Jun 18. pii: rna.065524.118. doi: 10.1261/rna.065524.118. [Epub ahead of print]

2.

Uncovering the forces between nucleosomes using DNA origami.

Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H.

Sci Adv. 2016 Nov 23;2(11):e1600974. doi: 10.1126/sciadv.1600974. eCollection 2016 Nov.

3.

Exploring Nucleosome Unwrapping Using DNA Origami.

Funke JJ, Ketterer P, Lieleg C, Korber P, Dietz H.

Nano Lett. 2016 Dec 14;16(12):7891-7898. Epub 2016 Nov 11.

PMID:
27960448
4.

Genomic Nucleosome Organization Reconstituted with Pure Proteins.

Krietenstein N, Wal M, Watanabe S, Park B, Peterson CL, Pugh BF, Korber P.

Cell. 2016 Oct 20;167(3):709-721.e12. doi: 10.1016/j.cell.2016.09.045.

5.

Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH.

J Biol Chem. 2016 May 6;291(19):9938. doi: 10.1074/jbc.A113.529354. No abstract available.

6.

Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

Lieleg C, Ketterer P, Nuebler J, Ludwigsen J, Gerland U, Dietz H, Mueller-Planitz F, Korber P.

Mol Cell Biol. 2015 May;35(9):1588-605. doi: 10.1128/MCB.01070-14. Epub 2015 Mar 2.

7.

Nucleosome positioning in yeasts: methods, maps, and mechanisms.

Lieleg C, Krietenstein N, Walker M, Korber P.

Chromosoma. 2015 Jun;124(2):131-51. doi: 10.1007/s00412-014-0501-x. Epub 2014 Dec 23. Review.

PMID:
25529773
8.

Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays.

Osberg B, Nuebler J, Korber P, Gerland U.

Nucleic Acids Res. 2014 Dec 16;42(22):13633-45. doi: 10.1093/nar/gku1190. Epub 2014 Nov 26.

9.

The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin.

Korber P, Barbaric S.

Nucleic Acids Res. 2014;42(17):10888-902. doi: 10.1093/nar/gku784. Epub 2014 Sep 4. Review.

10.

Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH.

J Biol Chem. 2014 May 23;289(21):14981-95. doi: 10.1074/jbc.M113.529354. Epub 2014 Apr 11. Erratum in: J Biol Chem. 2016 May 6;291(19):9938.

11.

The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

Musladin S, Krietenstein N, Korber P, Barbaric S.

Nucleic Acids Res. 2014 Apr;42(7):4270-82. doi: 10.1093/nar/gkt1395. Epub 2014 Jan 24.

12.

CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe.

Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall K, Korber P.

EMBO J. 2012 Nov 28;31(23):4388-403. doi: 10.1038/emboj.2012.289. Epub 2012 Oct 26.

13.

Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning.

Krietenstein N, Wippo CJ, Lieleg C, Korber P.

Methods Enzymol. 2012;513:205-32. doi: 10.1016/B978-0-12-391938-0.00009-4.

PMID:
22929771
14.

Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes.

Barrales RR, Korber P, Jimenez J, Ibeas JI.

Genetics. 2012 Jul;191(3):791-803. doi: 10.1534/genetics.112.140301. Epub 2012 Apr 27.

15.

Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution.

Korber P.

Biochem Soc Trans. 2012 Apr;40(2):377-82. doi: 10.1042/BST20110730. Review.

PMID:
22435815
16.

In vitro reconstitution of in vivo-like nucleosome positioning on yeast DNA.

Wippo CJ, Korber P.

Methods Mol Biol. 2012;833:271-87. doi: 10.1007/978-1-61779-477-3_17.

PMID:
22183600
17.

A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome.

Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF.

Science. 2011 May 20;332(6032):977-80. doi: 10.1126/science.1200508.

18.

The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.

Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P.

EMBO J. 2011 Apr 6;30(7):1277-88. doi: 10.1038/emboj.2011.43. Epub 2011 Feb 22.

19.

Nucleosome dynamics and epigenetic stability.

Korber P, Becker PB.

Essays Biochem. 2010 Sep 20;48(1):63-74. doi: 10.1042/bse0480063. Review.

PMID:
20822486
20.

In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo.

Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P.

Mol Cell Biol. 2010 Aug;30(16):4060-76. doi: 10.1128/MCB.01399-09. Epub 2010 Jun 21.

21.

Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae.

Lantermann AB, Straub T, Strålfors A, Yuan GC, Ekwall K, Korber P.

Nat Struct Mol Biol. 2010 Feb;17(2):251-7. doi: 10.1038/nsmb.1741. Epub 2010 Jan 31.

PMID:
20118936
22.

Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability.

Wippo CJ, Krstulovic BS, Ertel F, Musladin S, Blaschke D, Stürzl S, Yuan GC, Hörz W, Korber P, Barbaric S.

Mol Cell Biol. 2009 Jun;29(11):2960-81. doi: 10.1128/MCB.01054-08. Epub 2009 Mar 23.

23.

Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe.

Lantermann A, Strålfors A, Fagerström-Billai F, Korber P, Ekwall K.

Methods. 2009 Jul;48(3):218-25. doi: 10.1016/j.ymeth.2009.02.004. Epub 2009 Feb 20.

PMID:
19233281
24.

Recycling of aborted ribosomal 50S subunit-nascent chain-tRNA complexes by the heat shock protein Hsp15.

Jiang L, Schaffitzel C, Bingel-Erlenmeyer R, Ban N, Korber P, Koning RI, de Geus DC, Plaisier JR, Abrahams JP.

J Mol Biol. 2009 Mar 13;386(5):1357-67. doi: 10.1016/j.jmb.2008.10.079. Epub 2008 Nov 5.

PMID:
19013177
25.

Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo.

Barbaric S, Luckenbach T, Schmid A, Blaschke D, Hörz W, Korber P.

J Biol Chem. 2007 Sep 21;282(38):27610-21. Epub 2007 Jul 13.

26.

The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters.

Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Hörz W.

J Biol Chem. 2006 Mar 3;281(9):5539-45. Epub 2006 Jan 4.

27.
28.

Histones are incorporated in trans during reassembly of the yeast PHO5 promoter.

Schermer UJ, Korber P, Hörz W.

Mol Cell. 2005 Jul 22;19(2):279-85.

29.

Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter.

Korber P, Luckenbach T, Blaschke D, Hörz W.

Mol Cell Biol. 2004 Dec;24(24):10965-74.

30.
31.

SWRred not shaken; mixing the histones.

Korber P, Hörz W.

Cell. 2004 Apr 2;117(1):5-7. Review.

32.

Structure of Hsp15 reveals a novel RNA-binding motif.

Staker BL, Korber P, Bardwell JC, Saper MA.

EMBO J. 2000 Feb 15;19(4):749-57.

33.

Hsp15: a ribosome-associated heat shock protein.

Korber P, Stahl JM, Nierhaus KH, Bardwell JC.

EMBO J. 2000 Feb 15;19(4):741-8.

34.

A new heat shock protein that binds nucleic acids.

Korber P, Zander T, Herschlag D, Bardwell JC.

J Biol Chem. 1999 Jan 1;274(1):249-56.

35.

Why is DsbA such an oxidizing disulfide catalyst?

Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC.

Cell. 1995 Dec 15;83(6):947-55.

Supplemental Content

Loading ...
Support Center