Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Konopásek I[au]:

Probing the Ca(2+)-assisted π-π interaction during Ca(2+)-dependent protein folding. Matyska Liskova P et al. Soft Matter. (2016)

Diamond nanoparticles suppress lateral growth of bacterial colonies. Lišková P et al. Colloids Surf B Biointerfaces. (2018)

Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis. Vaňousová K et al. Biochim Biophys Acta Biomembr. (2018)

Search results

Items: 22

1.

Simple Way to Detect Trp to Tb3+ Resonance Energy Transfer in Calcium-Binding Peptides Using Excitation Spectrum.

Lišková P, Konopásek I, Fišer R.

J Fluoresc. 2019 Jan;29(1):9-14. doi: 10.1007/s10895-018-2326-0. Epub 2018 Nov 23.

PMID:
30471022
2.

Daptomycin Pore Formation and Stoichiometry Depend on Membrane Potential of Target Membrane.

Seydlová G, Sokol A, Lišková P, Konopásek I, Fišer R.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01589-18. doi: 10.1128/AAC.01589-18. Print 2019 Jan.

3.

Diamond nanoparticles suppress lateral growth of bacterial colonies.

Lišková P, Beranová J, Ukraintsev E, Fišer R, Kofroňová O, Benada O, Konopásek I, Kromka A.

Colloids Surf B Biointerfaces. 2018 Oct 1;170:544-552. doi: 10.1016/j.colsurfb.2018.06.057. Epub 2018 Jun 28.

PMID:
29975902
4.

Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis.

Vaňousová K, Beranová J, Fišer R, Jemioła-Rzemińska M, Matyska Lišková P, Cybulski L, Strzałka K, Konopásek I.

Biochim Biophys Acta Biomembr. 2018 Mar;1860(3):718-727. doi: 10.1016/j.bbamem.2017.12.015. Epub 2017 Dec 19.

5.

The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches.

Seydlova G, Beranova J, Bibova I, Dienstbier A, Drzmisek J, Masin J, Fiser R, Konopasek I, Vecerek B.

J Biol Chem. 2017 May 12;292(19):8048-8058. doi: 10.1074/jbc.M117.781559. Epub 2017 Mar 27.

6.

Probing the Ca(2+)-assisted π-π interaction during Ca(2+)-dependent protein folding.

Matyska Liskova P, Fiser R, Macek P, Chmelik J, Sykora J, Bednarova L, Konopasek I, Bumba L.

Soft Matter. 2016 Jan 14;12(2):531-41. doi: 10.1039/c5sm01796c. Epub 2015 Oct 22.

PMID:
26489523
7.

Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells.

Beranová J, Seydlová G, Kozak H, Benada O, Fišer R, Artemenko A, Konopásek I, Kromka A.

FEMS Microbiol Lett. 2014 Feb;351(2):179-86. doi: 10.1111/1574-6968.12373. Epub 2014 Jan 31.

8.

Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

Fiser R, Masin J, Bumba L, Pospisilova E, Fayolle C, Basler M, Sadilkova L, Adkins I, Kamanova J, Cerny J, Konopasek I, Osicka R, Leclerc C, Sebo P.

PLoS Pathog. 2012;8(4):e1002580. doi: 10.1371/journal.ppat.1002580. Epub 2012 Apr 5.

9.

Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions.

Beranová J, Mansilla MC, de Mendoza D, Elhottová D, Konopásek I.

J Bacteriol. 2010 Aug;192(16):4164-71. doi: 10.1128/JB.00384-10. Epub 2010 Jun 25.

10.

Different modes of membrane permeabilization by two RTX toxins: HlyA from Escherichia coli and CyaA from Bordetella pertussis.

Fiser R, Konopásek I.

Biochim Biophys Acta. 2009 Jun;1788(6):1249-54. doi: 10.1016/j.bbamem.2009.03.019. Epub 2009 Apr 5.

11.

Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation.

Beranová J, Jemioła-Rzemińska M, Elhottová D, Strzałka K, Konopásek I.

Biochim Biophys Acta. 2008 Feb;1778(2):445-53. Epub 2007 Dec 4.

12.
13.

Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells.

Masin J, Basler M, Knapp O, El-Azami-El-Idrissi M, Maier E, Konopasek I, Benz R, Leclerc C, Sebo P.

Biochemistry. 2005 Sep 27;44(38):12759-66.

PMID:
16171390
14.

Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family.

Martín C, Requero MA, Masin J, Konopasek I, Goñi FM, Sebo P, Ostolaza H.

J Bacteriol. 2004 Jun;186(12):3760-5.

15.

Short-lived fluorescence component of DPH reports on lipid--water interface of biological membranes.

Konopásek I, Vecer J, Strzalka K, Amler E.

Chem Phys Lipids. 2004 Jul;130(2):135-44.

PMID:
15172830
16.

Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes.

Masín J, Konopásek I, Svobodová J, Sebo P.

Biochim Biophys Acta. 2004 Jan 28;1660(1-2):144-54.

17.

Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP.

Smýkal P, Masín J, Hrdý I, Konopásek I, Zárský V.

Plant J. 2000 Sep;23(6):703-13.

18.
19.

Possible nystatin-protein interaction in yeast plasma membrane vesicles in the presence of ergosterol. A Förster energy transfer study.

Opekarová M, Urbanová P, Konopásek I, Kvasnicka P, Strzalka K, Sigler K, Amler E.

FEBS Lett. 1996 May 20;386(2-3):181-4.

20.

The transmembrane gradient of the dielectric constant influences the DPH lifetime distribution.

Konopásek I, Kvasnicka P, Amler E, Kotyk A, Curatola G.

FEBS Lett. 1995 Nov 6;374(3):338-40.

21.

Time-resolved polarized fluorescence studies of the temperature adaptation in Bacillus subtilis using DPH and TMA-DPH fluorescent probes.

Herman P, Konopásek I, Plásek J, Svobodová J.

Biochim Biophys Acta. 1994 Feb 23;1190(1):1-8.

PMID:
8110802
22.

Rotational relaxation rate of 1,6-diphenyl-1,3,5-hexatriene in cytoplasmic membranes of Bacillus subtilis. A new model of heterogeneous rotations.

Konopásek I, Svobodová J, Toptygin DD, Svoboda P.

Folia Microbiol (Praha). 1990;35(5):371-83.

PMID:
2125290

Supplemental Content

Loading ...
Support Center