Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.

Jayakody LN, Turner TL, Yun EJ, Kong II, Liu JJ, Jin YS.

Appl Microbiol Biotechnol. 2018 Sep;102(18):8121-8133. doi: 10.1007/s00253-018-9216-x. Epub 2018 Jul 19.

PMID:
30027490
2.

A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.

Liu JJ, Zhang GC, Kong II, Yun EJ, Zheng JQ, Kweon DH, Jin YS.

Appl Environ Microbiol. 2018 May 1;84(10). pii: e02858-17. doi: 10.1128/AEM.02858-17. Print 2018 May 15.

3.

Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

Kong II, Turner TL, Kim H, Kim SR, Jin YS.

FEMS Yeast Res. 2018 Feb 1;18(1). doi: 10.1093/femsyr/foy001.

PMID:
29325040
4.

Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

Kim SR, Skerker JM, Kong II, Kim H, Maurer MJ, Zhang GC, Peng D, Wei N, Arkin AP, Jin YS.

Metab Eng. 2017 Mar;40:176-185. doi: 10.1016/j.ymben.2017.02.006. Epub 2017 Feb 16.

PMID:
28216106
5.

Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS.

Adv Biochem Eng Biotechnol. 2018;162:175-215. doi: 10.1007/10_2016_22. Review.

PMID:
27913828
6.

Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.

Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS.

Biotechnol Bioeng. 2016 Dec;113(12):2587-2596. doi: 10.1002/bit.26021. Epub 2016 Sep 21.

PMID:
27240865
7.

GroE chaperonins assisted functional expression of bacterial enzymes in Saccharomyces cerevisiae.

Xia PF, Zhang GC, Liu JJ, Kwak S, Tsai CS, Kong II, Sung BH, Sohn JH, Wang SG, Jin YS.

Biotechnol Bioeng. 2016 Oct;113(10):2149-55. doi: 10.1002/bit.25980. Epub 2016 Apr 6.

PMID:
27003667
8.

Metabolic Engineering of Probiotic Saccharomyces boulardii.

Liu JJ, Kong II, Zhang GC, Jayakody LN, Kim H, Xia PF, Kwak S, Sung BH, Sohn JH, Walukiewicz HE, Rao CV, Jin YS.

Appl Environ Microbiol. 2016 Apr 4;82(8):2280-2287. doi: 10.1128/AEM.00057-16. Print 2016 Apr.

9.

Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion.

Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS.

Curr Opin Chem Biol. 2015 Dec;29:49-57. doi: 10.1016/j.cbpa.2015.09.008. Epub 2015 Sep 29. Review.

PMID:
26432418
10.

Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.

Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS.

Biotechnol Bioeng. 2015 Nov;112(11):2406-11. doi: 10.1002/bit.25632. Epub 2015 Jun 30.

PMID:
25943337
11.

Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.

Zhang GC, Kong II, Kim H, Liu JJ, Cate JH, Jin YS.

Appl Environ Microbiol. 2014 Dec;80(24):7694-701. doi: 10.1128/AEM.02310-14. Epub 2014 Oct 3.

12.

Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.

Kim SR, Lee KS, Kong II, Lesmana A, Lee WH, Seo JH, Kweon DH, Jin YS.

J Biotechnol. 2013 Mar 10;164(1):105-11. doi: 10.1016/j.jbiotec.2012.12.012. Epub 2013 Jan 29.

PMID:
23376240
13.

High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.

Kim SR, Ha SJ, Kong II, Jin YS.

Metab Eng. 2012 Jul;14(4):336-43. doi: 10.1016/j.ymben.2012.04.001. Epub 2012 Apr 13.

PMID:
22521925

Supplemental Content

Support Center