Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

Electroretinographic Abnormalities and Sex Differences Detected with Mesopic Adaptation in a Mouse Model of Schizophrenia: A and B Wave Analysis.

Torres Jimenez N, Lines JW, Kueppers RB, Kofuji P, Wei H, Rankila A, Coyle JT, Miller RF, McLoon LK.

Invest Ophthalmol Vis Sci. 2020 Feb 7;61(2):16. doi: 10.1167/iovs.61.2.16.

PMID:
32053730
2.

Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity.

Corkrum M, Covelo A, Lines J, Bellocchio L, Pisansky M, Loke K, Quintana R, Rothwell PE, Lujan R, Marsicano G, Martin ED, Thomas MJ, Kofuji P, Araque A.

Neuron. 2020 Jan 7. pii: S0896-6273(19)31092-X. doi: 10.1016/j.neuron.2019.12.026. [Epub ahead of print]

PMID:
31954621
3.

Sex Differences in Adrenal Bmal1 Deletion-Induced Augmentation of Glucocorticoid Responses to Stress and ACTH in Mice.

Engeland WC, Massman L, Miller L, Leng S, Pignatti E, Pantano L, Carlone DL, Kofuji P, Breault DT.

Endocrinology. 2019 Oct 1;160(10):2215-2229. doi: 10.1210/en.2019-00357.

PMID:
31398249
4.

Opioid-Mediated Astrocyte-Neuron Signaling in the Nucleus Accumbens.

Corkrum M, Rothwell PE, Thomas MJ, Kofuji P, Araque A.

Cells. 2019 Jun 14;8(6). pii: E586. doi: 10.3390/cells8060586.

5.

Swelling Gliotransmission by SWELL1 Channels.

Kofuji P, Araque A.

Neuron. 2019 May 22;102(4):711-713. doi: 10.1016/j.neuron.2019.05.005.

PMID:
31121120
6.

Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission.

Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A.

Glia. 2019 Jun;67(6):1076-1093. doi: 10.1002/glia.23589. Epub 2019 Feb 23.

PMID:
30801845
7.

The Adrenal Clock Prevents Aberrant Light-Induced Alterations in Circadian Glucocorticoid Rhythms.

Engeland WC, Massman L, Mishra S, Yoder JM, Leng S, Pignatti E, Piper ME, Carlone DL, Breault DT, Kofuji P.

Endocrinology. 2018 Dec 1;159(12):3950-3964. doi: 10.1210/en.2018-00769.

8.

Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.

Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC.

PLoS One. 2016 Dec 16;11(12):e0168651. doi: 10.1371/journal.pone.0168651. eCollection 2016.

9.

Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina.

Biesecker KR, Srienc AI, Shimoda AM, Agarwal A, Bergles DE, Kofuji P, Newman EA.

J Neurosci. 2016 Sep 7;36(36):9435-45. doi: 10.1523/JNEUROSCI.1782-16.2016.

10.

Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH.

Engeland WC, Yoder JM, Karsten CA, Kofuji P.

Front Endocrinol (Lausanne). 2016 Jun 29;7:81. doi: 10.3389/fendo.2016.00081. eCollection 2016.

11.

Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

Purrier N, Engeland WC, Kofuji P.

PLoS One. 2014 Oct 30;9(10):e111449. doi: 10.1371/journal.pone.0111449. eCollection 2014.

12.

Loss of gq/11 genes does not abolish melanopsin phototransduction.

Chew KS, Schmidt TM, Rupp AC, Kofuji P, Trimarchi JM.

PLoS One. 2014 May 28;9(5):e98356. doi: 10.1371/journal.pone.0098356. eCollection 2014.

13.

A role for melanopsin in alpha retinal ganglion cells and contrast detection.

Schmidt TM, Alam NM, Chen S, Kofuji P, Li W, Prusky GT, Hattar S.

Neuron. 2014 May 21;82(4):781-8. doi: 10.1016/j.neuron.2014.03.022.

14.

Diverse types of ganglion cell photoreceptors in the mammalian retina.

Sand A, Schmidt TM, Kofuji P.

Prog Retin Eye Res. 2012 Jul;31(4):287-302. doi: 10.1016/j.preteyeres.2012.03.003. Epub 2012 Mar 26. Review.

15.

Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse.

Schmidt TM, Kofuji P.

J Comp Neurol. 2011 Jun 1;519(8):1492-504. doi: 10.1002/cne.22579.

16.

An isolated retinal preparation to record light response from genetically labeled retinal ganglion cells.

Schmidt TM, Kofuji P.

J Vis Exp. 2011 Jan 26;(47). pii: 2367. doi: 10.3791/2367.

17.

Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits.

Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P.

Eur J Neurosci. 2011 Mar;33(5):856-67. doi: 10.1111/j.1460-9568.2010.07583.x. Epub 2011 Jan 24.

18.

Differential cone pathway influence on intrinsically photosensitive retinal ganglion cell subtypes.

Schmidt TM, Kofuji P.

J Neurosci. 2010 Dec 1;30(48):16262-71. doi: 10.1523/JNEUROSCI.3656-10.2010.

19.

Variable loss of Kir4.1 channel function in SeSAME syndrome mutations.

Tang X, Hang D, Sand A, Kofuji P.

Biochem Biophys Res Commun. 2010 Sep 3;399(4):537-41. doi: 10.1016/j.bbrc.2010.07.105. Epub 2010 Aug 3.

20.

Stoichiometry of N-methyl-D-aspartate receptors within the suprachiasmatic nucleus.

Clark JP 3rd, Kofuji P.

J Neurophysiol. 2010 Jun;103(6):3448-64. doi: 10.1152/jn.01069.2009. Epub 2010 Apr 21.

21.

Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.

Tang X, Schmidt TM, Perez-Leighton CE, Kofuji P.

Neuroscience. 2010 Mar 17;166(2):397-407. doi: 10.1016/j.neuroscience.2010.01.005. Epub 2010 Jan 14.

22.

Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis.

Tang X, Taniguchi K, Kofuji P.

Glia. 2009 Dec;57(16):1706-15. doi: 10.1002/glia.20882.

23.

Functional and morphological differences among intrinsically photosensitive retinal ganglion cells.

Schmidt TM, Kofuji P.

J Neurosci. 2009 Jan 14;29(2):476-82. doi: 10.1523/JNEUROSCI.4117-08.2009.

24.

Novel insights into non-image forming visual processing in the retina.

Schmidt TM, Kofuji P.

Cellscience. 2008 Jul 27;5(1):77-83.

25.

Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development.

Schmidt TM, Taniguchi K, Kofuji P.

J Neurophysiol. 2008 Jul;100(1):371-84. doi: 10.1152/jn.00062.2008. Epub 2008 May 14.

26.

Involvement of beta-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity.

Ma H, Lesné S, Kotilinek L, Steidl-Nichols JV, Sherman M, Younkin L, Younkin S, Forster C, Sergeant N, Delacourte A, Vassar R, Citron M, Kofuji P, Boland LM, Ashe KH.

Proc Natl Acad Sci U S A. 2007 May 8;104(19):8167-72. Epub 2007 Apr 30.

27.

Neurovascular coupling is not mediated by potassium siphoning from glial cells.

Metea MR, Kofuji P, Newman EA.

J Neurosci. 2007 Mar 7;27(10):2468-71.

28.

Effects of exogenous cholecystokinin and gastrin on the secretion of trypsin and chymotrypsin from yellowtail (Seriola quinqueradiata) isolated pyloric caeca.

Kofuji PY, Murashita K, Hosokawa H, Masumoto T.

Comp Biochem Physiol A Mol Integr Physiol. 2007 Jan;146(1):124-30. Epub 2006 Oct 4.

PMID:
17126578
29.

Potassium channel Kir4.1 macromolecular complex in retinal glial cells.

Connors NC, Kofuji P.

Glia. 2006 Jan 15;53(2):124-31.

PMID:
16206160
30.

HIV protein, transactivator of transcription, alters circadian rhythms through the light entrainment pathway.

Clark JP 3rd, Sampair CS, Kofuji P, Nath A, Ding JM.

Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R656-62. Epub 2005 Apr 28.

31.

Potassium buffering in the central nervous system.

Kofuji P, Newman EA.

Neuroscience. 2004;129(4):1045-56. Review.

32.

Contribution of Kir4.1 to the mouse electroretinogram.

Wu J, Marmorstein AD, Kofuji P, Peachey NS.

Mol Vis. 2004 Sep 1;10:650-4.

33.

The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia.

Connors NC, Adams ME, Froehner SC, Kofuji P.

J Biol Chem. 2004 Jul 2;279(27):28387-92. Epub 2004 Apr 21.

34.

Molecular substrates of potassium spatial buffering in glial cells.

Kofuji P, Connors NC.

Mol Neurobiol. 2003 Oct;28(2):195-208. Review.

PMID:
14576456
35.

Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.

Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C.

Hear Res. 2003 Mar;177(1-2):71-80.

PMID:
12618319
36.

Connexin immunoreactivity in glial cells of the rat retina.

Zahs KR, Kofuji P, Meier C, Dermietzel R.

J Comp Neurol. 2003 Jan 20;455(4):531-46.

PMID:
12508325
37.

Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.

Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A, Reichenbach A.

Glia. 2002 Sep;39(3):292-303.

PMID:
12203395
38.
39.

KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.

Marcus DC, Wu T, Wangemann P, Kofuji P.

Am J Physiol Cell Physiol. 2002 Feb;282(2):C403-7.

40.

Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination.

Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P.

J Neurosci. 2001 Aug 1;21(15):5429-38.

41.

Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety.

Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, Lester HA.

Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2786-91. Epub 2001 Feb 20.

42.

Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina.

Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA.

J Neurosci. 2000 Aug 1;20(15):5733-40.

43.

Functional expression of the human cardiac Na+/Ca2+ exchanger in Sf9 cells: rapid and specific Ni2+ transport.

Egger M, Ruknudin A, Lipp P, Kofuji P, Lederer WJ, Schulze DH, Niggli E.

Cell Calcium. 1999 Jan;25(1):9-17.

PMID:
10191956
44.

The GABA(A) receptor gamma1-subunit in seizure prone (DBA/2) and resistant (C57BL/6) mice.

Wang JB, Liu ZF, Kofuji P, Burt DR.

Brain Res Bull. 1998;45(4):421-5.

PMID:
9527017
45.

RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels.

Doupnik CA, Davidson N, Lester HA, Kofuji P.

Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10461-6.

46.

Na+/Ca2+ exchanger in Drosophila: cloning, expression, and transport differences.

Ruknudin A, Valdivia C, Kofuji P, Lederer WJ, Schulze DH.

Am J Physiol. 1997 Jul;273(1 Pt 1):C257-65.

PMID:
9252464
47.

A regenerative link in the ionic fluxes through the weaver potassium channel underlies the pathophysiology of the mutation.

Silverman SK, Kofuji P, Dougherty DA, Davidson N, Lester HA.

Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15429-34.

48.

Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells.

Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, Hatten ME.

Neuron. 1996 May;16(5):941-52.

49.

The molecular biology of the Na(+)-Ca2+ exchanger and its functional roles in heart, smooth muscle cells, neurons, glia, lymphocytes, and nonexcitable cells.

Lederer WJ, He S, Luo S, duBell W, Kofuji P, Kieval R, Neubauer CF, Ruknudin A, Cheng H, Cannell MB, Rogers TB, Schulze DH.

Ann N Y Acad Sci. 1996 Apr 15;779:7-17. Review. No abstract available.

PMID:
8659882
50.

Alternative splicing of the Na(+)-Ca2+ exchanger gene, NCX1.

Schulze DH, Kofuji P, Valdivia C, He S, Luo S, Ruknudin A, Wisel S, Kirby MS, duBell W, Lederer WJ.

Ann N Y Acad Sci. 1996 Apr 15;779:46-57. Review.

PMID:
8659862

Supplemental Content

Loading ...
Support Center