Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

Draft Genome Sequence of the Biofuel-Relevant Microalga Desmodesmus armatus.

Knoshaug EP, Nag A, Astling DP, Douchi D, Laurens LML.

Microbiol Resour Announc. 2020 Feb 6;9(6). pii: e00896-19. doi: 10.1128/MRA.00896-19.

2.

Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production.

Qiu M, Shen W, Yan X, He Q, Cai D, Chen S, Wei H, Knoshaug EP, Zhang M, Himmel ME, Yang S.

Biotechnol Biofuels. 2020 Jan 25;13:15. doi: 10.1186/s13068-020-1654-x. eCollection 2020.

3.

Author Correction: Fluxomic Analysis Reveals Central Carbon Metabolism Adaptation for Diazotroph Azotobacter vinelandii Ammonium Excretion.

Wu C, Herold RA, Knoshaug EP, Wang B, Xiong W, Laurens LML.

Sci Rep. 2019 Nov 26;9(1):18010. doi: 10.1038/s41598-019-54633-w.

4.

Fluxomic Analysis Reveals Central Carbon Metabolism Adaptation for Diazotroph Azotobacter vinelandii Ammonium Excretion.

Wu C, Herold RA, Knoshaug EP, Wang B, Xiong W, Laurens LML.

Sci Rep. 2019 Sep 13;9(1):13209. doi: 10.1038/s41598-019-49717-6. Erratum in: Sci Rep. 2019 Nov 26;9(1):18010.

5.

Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone.

Wei H, Wang W, Alper HS, Xu Q, Knoshaug EP, Van Wychen S, Lin CY, Luo Y, Decker SR, Himmel ME, Zhang M.

Front Microbiol. 2019 Jan 9;9:3276. doi: 10.3389/fmicb.2018.03276. eCollection 2018.

6.

Expression of an endoglucanase-cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi.

Xu Q, Alahuhta M, Wei H, Knoshaug EP, Wang W, Baker JO, Vander Wall T, Himmel ME, Zhang M.

Biotechnol Biofuels. 2018 Dec 3;11:322. doi: 10.1186/s13068-018-1301-y. eCollection 2018.

7.

Unified field studies of the algae testbed public-private partnership as the benchmark for algae agronomics.

Knoshaug EP, Wolfrum E, Laurens LML, Harmon VL, Dempster TA, McGowen J.

Sci Data. 2018 Nov 27;5:180267. doi: 10.1038/sdata.2018.267.

8.

Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A.

He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP.

Biotechnol Biofuels. 2018 Sep 24;11:258. doi: 10.1186/s13068-018-1256-z. eCollection 2018.

9.

Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395.

Guarnieri MT, Levering J, Henard CA, Boore JL, Betenbaugh MJ, Zengler K, Knoshaug EP.

Front Bioeng Biotechnol. 2018 Apr 5;6:37. doi: 10.3389/fbioe.2018.00037. eCollection 2018. No abstract available.

10.

Phosphoproteome of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395, under Nitrogen-Replete and -Deplete Conditions.

Guarnieri MT, Gerritsen AT, Henard CA, Knoshaug EP.

Front Bioeng Biotechnol. 2018 Mar 6;6:19. doi: 10.3389/fbioe.2018.00019. eCollection 2018. No abstract available.

11.

Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

Xu Q, Knoshaug EP, Wang W, Alahuhta M, Baker JO, Yang S, Vander Wall T, Decker SR, Himmel ME, Zhang M, Wei H.

Microb Cell Fact. 2017 Jul 24;16(1):126. doi: 10.1186/s12934-017-0742-5.

12.

The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions.

Henard CA, Guarnieri MT, Knoshaug EP.

Front Bioeng Biotechnol. 2017 Jan 17;4:100. doi: 10.3389/fbioe.2016.00100. eCollection 2016. No abstract available.

13.

Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

Zuñiga C, Li CT, Huelsman T, Levering J, Zielinski DC, McConnell BO, Long CP, Knoshaug EP, Guarnieri MT, Antoniewicz MR, Betenbaugh MJ, Zengler K.

Plant Physiol. 2016 Sep;172(1):589-602. doi: 10.1104/pp.16.00593. Epub 2016 Jul 2.

14.

Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.

Knoshaug EP, Vidgren V, Magalhães F, Jarvis EE, Franden MA, Zhang M, Singh A.

Yeast. 2015 Oct;32(10):615-28. doi: 10.1002/yea.3084. Epub 2015 Aug 17.

15.

Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production.

Gerken HG, Donohoe B, Knoshaug EP.

Planta. 2013 Jan;237(1):239-53. doi: 10.1007/s00425-012-1765-0. Epub 2012 Sep 26.

PMID:
23011569
16.

Butanol tolerance in a selection of microorganisms.

Knoshaug EP, Zhang M.

Appl Biochem Biotechnol. 2009 May;153(1-3):13-20. doi: 10.1007/s12010-008-8460-4. Epub 2008 Dec 17.

PMID:
19089652
17.

Heterologous expression of two ferulic acid esterases from Penicillium funiculosum.

Knoshaug EP, Selig MJ, Baker JO, Decker SR, Himmel ME, Adney WS.

Appl Biochem Biotechnol. 2008 Mar;146(1-3):79-87. doi: 10.1007/s12010-007-8074-2. Epub 2007 Dec 7.

PMID:
18421589
18.

Heterologous expression of Aspergillus niger beta-D-xylosidase (XlnD): characterization on lignocellulosic substrates.

Selig MJ, Knoshaug EP, Decker SR, Baker JO, Himmel ME, Adney WS.

Appl Biochem Biotechnol. 2008 Mar;146(1-3):57-68. doi: 10.1007/s12010-007-8069-z. Epub 2007 Nov 8.

PMID:
18421587
19.

Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities.

Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR.

Bioresour Technol. 2008 Jul;99(11):4997-5005. Epub 2007 Nov 19.

PMID:
18006303
20.

Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization.

Knoshaug EP, Ahlgren JA, Trempy JE.

Appl Environ Microbiol. 2007 Feb;73(3):897-905. Epub 2006 Nov 22.

21.

Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352.

Knoshaug EP, Ahlgren JA, Trempy JE.

J Dairy Sci. 2000 Apr;83(4):633-40.

Supplemental Content

Loading ...
Support Center