Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60

1.

Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells.

Pavlaki I, Docquier F, Chernukhin I, Kita G, Gretton S, Clarkson CT, Teif VB, Klenova E.

Biochim Biophys Acta Gene Regul Mech. 2018 Aug;1861(8):718-730. doi: 10.1016/j.bbagrm.2018.06.010. Epub 2018 Jul 5.

2.

Role of CTCF poly(ADP-Ribosyl)ation in the regulation of apoptosis in breast cancer cells.

Venkatraman B, Klenova E.

Indian J Med Paediatr Oncol. 2015 Jan-Mar;36(1):49-54. doi: 10.4103/0971-5851.151784.

3.

Expression of the cancer-testis antigen BORIS correlates with prostate cancer.

Cheema Z, Hari-Gupta Y, Kita GX, Farrar D, Seddon I, Corr J, Klenova E.

Prostate. 2014 Feb;74(2):164-76. doi: 10.1002/pros.22738. Epub 2013 Oct 4.

PMID:
24123052
4.

A novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells.

Méndez-Catalá CF, Gretton S, Vostrov A, Pugacheva E, Farrar D, Ito Y, Docquier F, Kita GX, Murrell A, Lobanenkov V, Klenova E.

Neoplasia. 2013 Aug;15(8):898-912.

5.

ADP-ribose polymer depletion leads to nuclear Ctcf re-localization and chromatin rearrangement(1).

Guastafierro T, Catizone A, Calabrese R, Zampieri M, Martella O, Bacalini MG, Reale A, Di Girolamo M, Miccheli M, Farrar D, Klenova E, Ciccarone F, Caiafa P.

Biochem J. 2013 Feb 1;449(3):623-30. doi: 10.1042/BJ20121429.

PMID:
23116180
6.

Generation of poly(ADP-ribosyl)ation deficient mutants of the transcription factor, CTCF.

Farrar D, Chernukhin I, Klenova E.

Methods Mol Biol. 2011;780:293-312. doi: 10.1007/978-1-61779-270-0_18.

PMID:
21870268
7.

BioVyon Protein A, an alternative solid-phase affinity matrix for chromatin immunoprecipitation.

Chernukhin I, Kang SY, Brown S, Gretton S, Mendez-Catala CF, Cowieson D, Klenova E.

Anal Biochem. 2011 May 15;412(2):183-8. doi: 10.1016/j.ab.2011.01.036. Epub 2011 Feb 1.

PMID:
21284925
8.

Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation.

Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, Yammine S, Ohlsson R, Murrell A, Klenova E.

Mol Cell Biol. 2010 Mar;30(5):1199-216. doi: 10.1128/MCB.00827-09. Epub 2009 Dec 28.

9.

Does CTCF mediate between nuclear organization and gene expression?

Ohlsson R, Lobanenkov V, Klenova E.

Bioessays. 2010 Jan;32(1):37-50. doi: 10.1002/bies.200900118. Review.

PMID:
20020479
10.

Combinatorial interaction between two human serotonin transporter gene variable number tandem repeats and their regulation by CTCF.

Ali FR, Vasiliou SA, Haddley K, Paredes UM, Roberts JC, Miyajima F, Klenova E, Bubb VJ, Quinn JP.

J Neurochem. 2010 Jan;112(1):296-306. doi: 10.1111/j.1471-4159.2009.06453.x. Epub 2009 Oct 26.

11.

Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation.

Docquier F, Kita GX, Farrar D, Jat P, O'Hare M, Chernukhin I, Gretton S, Mandal A, Alldridge L, Klenova E.

Clin Cancer Res. 2009 Sep 15;15(18):5762-71. doi: 10.1158/1078-0432.CCR-09-0329. Epub 2009 Sep 8.

12.

Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer.

Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S, Silva AL, Maia AT, Huddleston JE, Uribe-Lewis S, Woodfine K, Jagodic M, Nativio R, Dunning A, Moore G, Klenova E, Bingham S, Pharoah PD, Brenton JD, Beck S, Sandhu MS, Murrell A.

Hum Mol Genet. 2008 Sep 1;17(17):2633-43. doi: 10.1093/hmg/ddn163. Epub 2008 Jun 9.

13.

BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours.

D'Arcy V, Pore N, Docquier F, Abdullaev ZK, Chernukhin I, Kita GX, Rai S, Smart M, Farrar D, Pack S, Lobanenkov V, Klenova E.

Br J Cancer. 2008 Feb 12;98(3):571-9. doi: 10.1038/sj.bjc.6604181. Epub 2008 Jan 15. Erratum in: Br J Cancer. 2008 Feb 12;98(3):676.

15.

A CTCF-binding silencer regulates the imprinted genes AWT1 and WT1-AS and exhibits sequential epigenetic defects during Wilms' tumourigenesis.

Hancock AL, Brown KW, Moorwood K, Moon H, Holmgren C, Mardikar SH, Dallosso AR, Klenova E, Loukinov D, Ohlsson R, Lobanenkov VV, Malik K.

Hum Mol Genet. 2007 Feb 1;16(3):343-54. Epub 2007 Jan 8.

PMID:
17210670
16.

CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide.

Chernukhin I, Shamsuddin S, Kang SY, Bergström R, Kwon YW, Yu W, Whitehead J, Mukhopadhyay R, Docquier F, Farrar D, Morrison I, Vigneron M, Wu SY, Chiang CM, Loukinov D, Lobanenkov V, Ohlsson R, Klenova E.

Mol Cell Biol. 2007 Mar;27(5):1631-48. Epub 2007 Jan 8.

17.

The potential of BORIS detected in the leukocytes of breast cancer patients as an early marker of tumorigenesis.

D'Arcy V, Abdullaev ZK, Pore N, Docquier F, Torrano V, Chernukhin I, Smart M, Farrar D, Metodiev M, Fernandez N, Richard C, Delgado MD, Lobanenkov V, Klenova E.

Clin Cancer Res. 2006 Oct 15;12(20 Pt 1):5978-86.

18.

Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.

Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD.

J Cell Sci. 2006 May 1;119(Pt 9):1746-59. Epub 2006 Apr 4.

19.

Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis.

Docquier F, Farrar D, D'Arcy V, Chernukhin I, Robinson AF, Loukinov D, Vatolin S, Pack S, Mackay A, Harris RA, Dorricott H, O'Hare MJ, Lobanenkov V, Klenova E.

Cancer Res. 2005 Jun 15;65(12):5112-22.

20.

CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells.

Torrano V, Chernukhin I, Docquier F, D'Arcy V, León J, Klenova E, Delgado MD.

J Biol Chem. 2005 Jul 29;280(30):28152-61. Epub 2005 Jun 6.

21.
22.

Poly(ADP-ribosyl)ation and epigenetics. Is CTCF PARt of the plot?

Klenova E, Ohlsson R.

Cell Cycle. 2005 Jan;4(1):96-101. Epub 2005 Jan 19. Review.

PMID:
15655363
23.

Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation.

Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F, Farrar D, Tavoosidana G, Mukhopadhyay R, Kanduri C, Oshimura M, Feinberg AP, Lobanenkov V, Klenova E, Ohlsson R.

Nat Genet. 2004 Oct;36(10):1105-10. Epub 2004 Sep 7.

PMID:
15361875
24.

The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide.

Mukhopadhyay R, Yu W, Whitehead J, Xu J, Lezcano M, Pack S, Kanduri C, Kanduri M, Ginjala V, Vostrov A, Quitschke W, Chernukhin I, Klenova E, Lobanenkov V, Ohlsson R.

Genome Res. 2004 Aug;14(8):1594-602. Epub 2004 Jul 15.

25.

YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders.

Klenova E, Scott AC, Roberts J, Shamsuddin S, Lovejoy EA, Bergmann S, Bubb VJ, Royer HD, Quinn JP.

J Neurosci. 2004 Jun 30;24(26):5966-73.

26.

Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance.

Pant V, Kurukuti S, Pugacheva E, Shamsuddin S, Mariano P, Renkawitz R, Klenova E, Lobanenkov V, Ohlsson R.

Mol Cell Biol. 2004 Apr;24(8):3497-504.

27.

The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer.

Klenova EM, Morse HC 3rd, Ohlsson R, Lobanenkov VV.

Semin Cancer Biol. 2002 Oct;12(5):399-414. Review.

PMID:
12191639
28.

Immunoprecipitation techniques for the analysis of transcription factor complexes.

Klenova E, Chernukhin I, Inoue T, Shamsuddin S, Norton J.

Methods. 2002 Mar;26(3):254-9.

PMID:
12054881
29.

BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma.

Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA, Cui H, Niemitz EL, Rasko JE, Docquier FM, Kistler M, Breen JJ, Zhuang Z, Quitschke WW, Renkawitz R, Klenova EM, Feinberg AP, Ohlsson R, Morse HC 3rd, Lobanenkov VV.

Proc Natl Acad Sci U S A. 2002 May 14;99(10):6806-11.

30.

Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter tts DNA-binding specificity.

Filippova GN, Qi CF, Ulmer JE, Moore JM, Ward MD, Hu YJ, Loukinov DI, Pugacheva EM, Klenova EM, Grundy PE, Feinberg AP, Cleton-Jansen AM, Moerland EW, Cornelisse CJ, Suzuki H, Komiya A, Lindblom A, Dorion-Bonnet F, Neiman PE, Morse HC 3rd, Collins SJ, Lobanenkov VV.

Cancer Res. 2002 Jan 1;62(1):48-52.

31.

Cell growth inhibition by the multifunctional multivalent zinc-finger factor CTCF.

Rasko JE, Klenova EM, Leon J, Filippova GN, Loukinov DI, Vatolin S, Robinson AF, Hu YJ, Ulmer J, Ward MD, Pugacheva EM, Neiman PE, Morse HC 3rd, Collins SJ, Lobanenkov VV.

Cancer Res. 2001 Aug 15;61(16):6002-7.

32.

Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF.

Klenova EM, Chernukhin IV, El-Kady A, Lee RE, Pugacheva EM, Loukinov DI, Goodwin GH, Delgado D, Filippova GN, León J, Morse HC 3rd, Neiman PE, Lobanenkov VV.

Mol Cell Biol. 2001 Mar;21(6):2221-34.

33.

Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF.

Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI, Lobanenkov VV, Klenova EM.

J Biol Chem. 2000 Sep 22;275(38):29915-21.

34.

A method of immobilization on the solid support of complex and simple enzymes retaining their activity.

Chernukhin IV, Klenova EM.

Anal Biochem. 2000 Apr 10;280(1):178-81.

PMID:
10805537
35.
36.

Characterization of the chicken CTCF genomic locus, and initial study of the cell cycle-regulated promoter of the gene.

Klenova EM, Fagerlie S, Filippova GN, Kretzner L, Goodwin GH, Loring G, Neiman PE, Lobanenkov VV.

J Biol Chem. 1998 Oct 9;273(41):26571-9.

37.
39.

An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes.

Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV.

Mol Cell Biol. 1996 Jun;16(6):2802-13.

40.

CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms.

Klenova EM, Nicolas RH, Paterson HF, Carne AF, Heath CM, Goodwin GH, Neiman PE, Lobanenkov VV.

Mol Cell Biol. 1993 Dec;13(12):7612-24.

41.

Isolation of a cDNA clone encoding the RNase-superfamily-related gene highly expressed in chicken bone marrow cells.

Klenova EM, Botezato I, Laudet V, Goodwin GH, Wallace JC, Lobanenkov VV.

Biochem Biophys Res Commun. 1992 May 29;185(1):231-9.

PMID:
1599460
42.

[Differences in expression and functional organization of the rat tyrosine aminotransferase gene in two lines of Morris hepatoma, 8994 and 7777].

Adler VV, Kiseleva NP, Kistanova EN, Klenova EM, Lobanenkov VV, Polotskaia AV, Tevosian SG.

Mol Biol (Mosk). 1991 Mar-Apr;25(2):431-41. Russian.

PMID:
1679193
43.

A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene.

Lobanenkov VV, Nicolas RH, Adler VV, Paterson H, Klenova EM, Polotskaja AV, Goodwin GH.

Oncogene. 1990 Dec;5(12):1743-53.

PMID:
2284094
44.

[Multiple DNA recognition sites by sequence-specific DNA-binding proteins in the region of replication initiation site located 5-end upstream to the chicken alpha-globin gene domain].

Kintsurashvili EG, Adler VV, Klenova EM, Lobanenkov VV, Razin SV.

Dokl Akad Nauk SSSR. 1990 Jan-Feb;310(1):227-8. Russian. No abstract available.

PMID:
2338045
45.

[The identification of the binding sites of nuclear factor I in the region of the bovine beta-casein gene].

Kabishev AA, Klenova EM, Gribanovskiĭ VA, Gorodetskiĭ SI.

Dokl Akad Nauk SSSR. 1990;315(4):997-1000. Russian. No abstract available.

PMID:
2097142
46.

[Nuclear factor A5 from the rat liver that requires a metal for specific interaction in vitro with distal element of the tyrosine aminotransferase gene promoter].

Klenova EM, Polotskaia AV, Adler VV, Gorodetskiĭ SI, Gribanovskiĭ VA, Lobanenkov VV.

Mol Biol (Mosk). 1989 Sep-Oct;23(5):1416-27. Russian.

PMID:
2575211
47.

[Specific interaction of a nuclear protein factor from the CTF/NF-I family with 2 different promoter regions of the rat tyrosine aminotransferase gene].

Klenova EM, Adler VV, Gribanovskiĭ VA, Gorodetskiĭ SI, Bogdanova NN, Lobanenkov VV.

Mol Biol (Mosk). 1989 Sep-Oct;23(5):1400-15. Russian.

PMID:
2575210
48.

[In vitro formation of multimers of specific DNA-protein complexes with nuclear factor I (NF I)].

Klenova EM, Adler VV, Lobanenkov VV.

Dokl Akad Nauk SSSR. 1989;306(4):995-8. Russian. No abstract available.

PMID:
2570685
49.

[Change in the level of casein mRNA in the mammary gland of rats and goats during lactation].

Klenova EM, Desiatnikov OO, Bulachev VN, Gorodetskiĭ SI.

Biokhimiia. 1988 Nov;53(11):1925-31. Russian.

PMID:
3251556
50.

[DNA-binding nuclear protein factors specifically binding with the promoter elements of the tyrosine aminotransferase gene in the rat].

Lobanenkov VV, Klenova EM, Gorodetskiĭ SI, Adler VV.

Dokl Akad Nauk SSSR. 1988;298(3):746-50. Russian. No abstract available.

PMID:
2897275

Supplemental Content

Loading ...
Support Center