Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae.

Miller EL, Kjos M, Abrudan MI, Roberts IS, Veening JW, Rozen DE.

ISME J. 2018 Jun 13. doi: 10.1038/s41396-018-0178-x. [Epub ahead of print]

PMID:
29899510
2.

CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus.

Stamsås GA, Myrbråten IS, Straume D, Salehian Z, Veening JW, Håvarstein LS, Kjos M.

Mol Microbiol. 2018 Jun 8. doi: 10.1111/mmi.13999. [Epub ahead of print]

PMID:
29884993
3.

Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants.

Polesel F, Farkas J, Kjos M, Almeida Carvalho P, Flores-Alsina X, Gernaey KV, Hansen SF, Plósz BG, Booth AM.

Water Res. 2018 Sep 15;141:19-31. doi: 10.1016/j.watres.2018.04.065. Epub 2018 Apr 30.

PMID:
29753974
4.

Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence.

Moreno-Gámez S, Sorg RA, Domenech A, Kjos M, Weissing FJ, van Doorn GS, Veening JW.

Nat Commun. 2017 Oct 11;8(1):854. doi: 10.1038/s41467-017-00903-y.

5.

Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae.

Stamsås GA, Straume D, Ruud Winther A, Kjos M, Frantzen CA, Håvarstein LS.

Mol Microbiol. 2017 Sep;105(6):954-967. doi: 10.1111/mmi.13748. Epub 2017 Jul 23.

PMID:
28710862
6.

Chromosome segregation drives division site selection in Streptococcus pneumoniae.

van Raaphorst R, Kjos M, Veening JW.

Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5959-E5968. doi: 10.1073/pnas.1620608114. Epub 2017 Jul 3.

7.

High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae.

Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP, Knoops K, Sorg RA, Zhang JR, Veening JW.

Mol Syst Biol. 2017 May 10;13(5):931. doi: 10.15252/msb.20167449.

8.

A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK.

Oppegård C, Kjos M, Veening JW, Nissen-Meyer J, Kristensen T.

Microbiologyopen. 2016 Aug;5(4):700-8. doi: 10.1002/mbo3.363. Epub 2016 May 5.

9.

Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System.

Kjos M, Miller E, Slager J, Lake FB, Gericke O, Roberts IS, Rozen DE, Veening JW.

PLoS Pathog. 2016 Feb 3;12(2):e1005422. doi: 10.1371/journal.ppat.1005422. eCollection 2016 Feb.

10.

Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae.

Nourikyan J, Kjos M, Mercy C, Cluzel C, Morlot C, Noirot-Gros MF, Guiral S, Lavergne JP, Veening JW, Grangeasse C.

PLoS Genet. 2015 Sep 17;11(9):e1005518. doi: 10.1371/journal.pgen.1005518. eCollection 2015 Sep.

11.

Red Fluorescent Proteins for Gene Expression and Protein Localization Studies in Streptococcus pneumoniae and Efficient Transformation with DNA Assembled via the Gibson Assembly Method.

Beilharz K, van Raaphorst R, Kjos M, Veening JW.

Appl Environ Microbiol. 2015 Oct;81(20):7244-52. doi: 10.1128/AEM.02033-15. Epub 2015 Aug 7.

12.

The ParB-parS Chromosome Segregation System Modulates Competence Development in Streptococcus pneumoniae.

Attaiech L, Minnen A, Kjos M, Gruber S, Veening JW.

MBio. 2015 Jun 30;6(4):e00662. doi: 10.1128/mBio.00662-15.

13.

Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected].

Paixão L, Oliveira J, Veríssimo A, Vinga S, Lourenço EC, Ventura MR, Kjos M, Veening JW, Fernandes VE, Andrew PW, Yesilkaya H, Neves AR.

PLoS One. 2015 Mar 31;10(3):e0121042. doi: 10.1371/journal.pone.0121042. eCollection 2015. Erratum in: PLoS One. 2015;10(4):e0127483.

14.

Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions.

Kjos M, Aprianto R, Fernandes VE, Andrew PW, van Strijp JA, Nijland R, Veening JW.

J Bacteriol. 2015 Mar;197(5):807-18. doi: 10.1128/JB.02221-14. Epub 2014 Dec 15.

15.

Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis.

Kjos M, Oppegård C, Diep DB, Nes IF, Veening JW, Nissen-Meyer J, Kristensen T.

Mol Microbiol. 2014 Jun;92(6):1177-87. doi: 10.1111/mmi.12632. Epub 2014 May 23.

16.

Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin.

Slager J, Kjos M, Attaiech L, Veening JW.

Cell. 2014 Apr 10;157(2):395-406. doi: 10.1016/j.cell.2014.01.068.

17.

Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation.

Kjos M, Veening JW.

Mol Microbiol. 2014 Mar;91(6):1088-105. doi: 10.1111/mmi.12517. Epub 2014 Feb 9.

18.

How to get (a)round: mechanisms controlling growth and division of coccoid bacteria.

Pinho MG, Kjos M, Veening JW.

Nat Rev Microbiol. 2013 Sep;11(9):601-14. doi: 10.1038/nrmicro3088. Review.

PMID:
23949602
19.

Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance.

Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F.

J Appl Microbiol. 2012 Oct;113(4):723-36. doi: 10.1111/j.1365-2672.2012.05338.x. Epub 2012 Jun 8. Review.

20.

Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria.

Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB.

Microbiology. 2011 Dec;157(Pt 12):3256-67. doi: 10.1099/mic.0.052571-0. Epub 2011 Oct 6. Review.

PMID:
21980118
21.

Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system.

Kjos M, Nes IF, Diep DB.

Appl Environ Microbiol. 2011 May;77(10):3335-42. doi: 10.1128/AEM.02602-10. Epub 2011 Mar 18.

22.

An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins.

Kjos M, Salehian Z, Nes IF, Diep DB.

J Bacteriol. 2010 Nov;192(22):5906-13. doi: 10.1128/JB.00777-10. Epub 2010 Sep 24.

23.

The abi proteins and their involvement in bacteriocin self-immunity.

Kjos M, Snipen L, Salehian Z, Nes IF, Diep DB.

J Bacteriol. 2010 Apr;192(8):2068-76. doi: 10.1128/JB.01553-09. Epub 2010 Feb 12.

24.

Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells.

Kjos M, Nes IF, Diep DB.

Microbiology. 2009 Sep;155(Pt 9):2949-61. doi: 10.1099/mic.0.030015-0. Epub 2009 May 28.

PMID:
19477899
25.

An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum.

Diep DB, Straume D, Kjos M, Torres C, Nes IF.

Peptides. 2009 Aug;30(8):1562-74. doi: 10.1016/j.peptides.2009.05.014. Epub 2009 May 22. Review.

PMID:
19465075
26.

Transposition of IS10R in Lactococcus lactis.

Kjos M, Straume D, Nes IF, Diep DB.

J Appl Microbiol. 2009 Jan;106(1):288-95. doi: 10.1111/j.1365-2672.2008.04002.x. Epub 2008 Dec 19.

27.

Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators.

Straume D, Kjos M, Nes IF, Diep DB.

Mol Genet Genomics. 2007 Sep;278(3):283-93. Epub 2007 Jun 19.

PMID:
17576598

Supplemental Content

Support Center