Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

The Effect of Cellular Redox Status on the Evolvability of New Catabolic Pathways.

Kivisaar M.

MBio. 2018 Oct 16;9(5). pii: e01981-18. doi: 10.1128/mBio.01981-18.

2.

Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida.

Ukkivi K, Kivisaar M.

DNA Repair (Amst). 2018 Dec;72:18-27. doi: 10.1016/j.dnarep.2018.09.011. Epub 2018 Sep 26.

PMID:
30292721
3.

Colonization efficiency of Pseudomonas putida is influenced by Fis-controlled transcription of nuoA-N operon.

Teppo A, Lahesaare A, Ainelo H, Samuel K, Kivisaar M, Teras R.

PLoS One. 2018 Aug 2;13(8):e0201841. doi: 10.1371/journal.pone.0201841. eCollection 2018.

4.

Correction: The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida.

Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R.

PLoS One. 2018 Jan 30;13(1):e0192336. doi: 10.1371/journal.pone.0192336. eCollection 2018.

5.

The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida.

Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R.

PLoS One. 2017 Sep 25;12(9):e0185482. doi: 10.1371/journal.pone.0185482. eCollection 2017. Erratum in: PLoS One. 2018 Jan 30;13(1):e0192336.

6.

Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria.

Ilmjärv T, Naanuri E, Kivisaar M.

PLoS One. 2017 Aug 4;12(8):e0182484. doi: 10.1371/journal.pone.0182484. eCollection 2017.

7.

Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance.

Sidorenko J, Jatsenko T, Kivisaar M.

Mutat Res. 2017 Mar;797-799:26-37. doi: 10.1016/j.mrfmmm.2017.03.005. Epub 2017 Mar 16.

PMID:
28340408
8.

DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida.

Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M.

PLoS One. 2017 Jan 24;12(1):e0170719. doi: 10.1371/journal.pone.0170719. eCollection 2017.

9.

LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida.

Lahesaare A, Ainelo H, Teppo A, Kivisaar M, Heipieper HJ, Teras R.

PLoS One. 2016 Nov 3;11(11):e0166078. doi: 10.1371/journal.pone.0166078. eCollection 2016.

10.

A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads.

Tagel M, Tavita K, Hõrak R, Kivisaar M, Ilves H.

Mutat Res. 2016 Aug;790:41-55. doi: 10.1016/j.mrfmmm.2016.06.002. Epub 2016 Jul 6.

PMID:
27447898
11.

NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida.

Paris Ü, Mikkel K, Tavita K, Saumaa S, Teras R, Kivisaar M.

DNA Repair (Amst). 2015 Jul;31:11-8. doi: 10.1016/j.dnarep.2015.04.005. Epub 2015 Apr 23.

PMID:
25942369
12.

Pseudomonas putida Fis binds to the lapF promoter in vitro and represses the expression of LapF.

Lahesaare A, Moor H, Kivisaar M, Teras R.

PLoS One. 2014 Dec 29;9(12):e115901. doi: 10.1371/journal.pone.0115901. eCollection 2014.

13.

NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida.

Sidorenko J, Ukkivi K, Kivisaar M.

DNA Repair (Amst). 2015 Jan;25:15-26. doi: 10.1016/j.dnarep.2014.11.001. Epub 2014 Nov 13.

PMID:
25463394
14.

Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF.

Moor H, Teppo A, Lahesaare A, Kivisaar M, Teras R.

Microbiology. 2014 Dec;160(Pt 12):2681-93. doi: 10.1099/mic.0.082503-0. Epub 2014 Sep 24.

PMID:
25253613
15.

Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses.

Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V.

Environ Microbiol. 2015 Jan;17(1):76-90. doi: 10.1111/1462-2920.12492. Epub 2014 Jun 2.

16.

Pseudomonas putida AlkA and AlkB proteins comprise different defense systems for the repair of alkylation damage to DNA - in vivo, in vitro, and in silico studies.

Mielecki D, Saumaa S, Wrzesiński M, Maciejewska AM, Żuchniewicz K, Sikora A, Piwowarski J, Nieminuszczy J, Kivisaar M, Grzesiuk E.

PLoS One. 2013 Oct 2;8(10):e76198. doi: 10.1371/journal.pone.0076198. eCollection 2013.

17.

Mutation frequency and spectrum of mutations vary at different chromosomal positions of Pseudomonas putida.

Juurik T, Ilves H, Teras R, Ilmjärv T, Tavita K, Ukkivi K, Teppo A, Mikkel K, Kivisaar M.

PLoS One. 2012;7(10):e48511. doi: 10.1371/journal.pone.0048511. Epub 2012 Oct 31.

18.

Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target.

Tavita K, Mikkel K, Tark-Dame M, Jerabek H, Teras R, Sidorenko J, Tegova R, Tover A, Dame RT, Kivisaar M.

Mutat Res. 2012 Sep 1;737(1-2):12-24. doi: 10.1016/j.mrfmmm.2012.07.004. Epub 2012 Aug 10.

PMID:
22917545
19.

Fis regulates the competitiveness of Pseudomonas putida on barley roots by inducing biofilm formation.

Jakovleva J, Teppo A, Velts A, Saumaa S, Moor H, Kivisaar M, Teras R.

Microbiology. 2012 Mar;158(Pt 3):708-20. doi: 10.1099/mic.0.053355-0. Epub 2012 Jan 5.

PMID:
22222498
20.

Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria.

Kivisaar M.

Mol Microbiol. 2011 Oct;82(2):265-8. doi: 10.1111/j.1365-2958.2011.07824.x. Epub 2011 Sep 14.

21.

Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida.

Sidorenko J, Jatsenko T, Saumaa S, Teras R, Tark-Dame M, Hõrak R, Kivisaar M.

Mutat Res. 2011 Sep 1;714(1-2):63-77. doi: 10.1016/j.mrfmmm.2011.06.013. Epub 2011 Jul 6.

PMID:
21763330
22.

Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads.

Kivisaar M.

FEMS Microbiol Lett. 2010 Nov;312(1):1-14. doi: 10.1111/j.1574-6968.2010.02027.x. Epub 2010 Jun 21. Review.

23.

The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria.

Putrins M, Ilves H, Lilje L, Kivisaar M, Hõrak R.

BMC Microbiol. 2010 Apr 14;10:110. doi: 10.1186/1471-2180-10-110.

24.

Molecular characterization of Rif(r) mutations in Pseudomonas aeruginosa and Pseudomonas putida.

Jatsenko T, Tover A, Tegova R, Kivisaar M.

Mutat Res. 2010 Jan 5;683(1-2):106-14. doi: 10.1016/j.mrfmmm.2009.10.015.

PMID:
19887074
25.

Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways.

Kivisaar M.

Mol Microbiol. 2009 Nov;74(4):777-81. doi: 10.1111/j.1365-2958.2009.06905.x. Epub 2009 Oct 8.

26.

Identification of ColR binding consensus and prediction of regulon of ColRS two-component system.

Kivistik PA, Kivi R, Kivisaar M, Hõrak R.

BMC Mol Biol. 2009 May 16;10:46. doi: 10.1186/1471-2199-10-46.

27.

Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase.

Tarassova K, Tegova R, Tover A, Teras R, Tark M, Saumaa S, Kivisaar M.

J Bacteriol. 2009 Jun;191(11):3604-14. doi: 10.1128/JB.01803-08. Epub 2009 Apr 3.

28.

Fis negatively affects binding of Tn4652 transposase by out-competing IHF from the left end of Tn4652.

Teras R, Jakovleva J, Kivisaar M.

Microbiology. 2009 Apr;155(Pt 4):1203-14. doi: 10.1099/mic.0.022830-0.

PMID:
19332822
29.

ColRS two-component system prevents lysis of subpopulation of glucose-grown Pseudomonas putida.

Putrins M, Ilves H, Kivisaar M, Hõrak R.

Environ Microbiol. 2008 Oct;10(10):2886-93. doi: 10.1111/j.1462-2920.2008.01705.x. Epub 2008 Jul 24.

PMID:
18657172
30.

Dual role of NER in mutagenesis in Pseudomonas putida.

Tark M, Tover A, Koorits L, Tegova R, Kivisaar M.

DNA Repair (Amst). 2008 Jan 1;7(1):20-30. Epub 2007 Aug 27.

PMID:
17720631
31.

Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.

Saumaa S, Tover A, Tark M, Tegova R, Kivisaar M.

J Bacteriol. 2007 Aug;189(15):5504-14. Epub 2007 Jun 1.

32.

Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida.

Putrins M, Tover A, Tegova R, Saks U, Kivisaar M.

Microbiology. 2007 Jun;153(Pt 6):1860-71.

PMID:
17526843
33.

Target site selection of Pseudomonas putida transposon Tn4652.

Kivistik PA, Kivisaar M, Hõrak R.

J Bacteriol. 2007 May;189(10):3918-21. Epub 2007 Mar 9.

34.

Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida.

Koorits L, Tegova R, Tark M, Tarassova K, Tover A, Kivisaar M.

DNA Repair (Amst). 2007 Jun 1;6(6):863-8. Epub 2007 Feb 28.

PMID:
17331811
35.

The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol.

Kivistik PA, Putrins M, Püvi K, Ilves H, Kivisaar M, Hõrak R.

J Bacteriol. 2006 Dec;188(23):8109-17. Epub 2006 Sep 29.

36.

Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida.

Saumaa S, Tarassova K, Tark M, Tover A, Tegova R, Kivisaar M.

DNA Repair (Amst). 2006 Apr 8;5(4):505-14. Epub 2006 Jan 18.

PMID:
16414311
37.

A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress.

Tark M, Tover A, Tarassova K, Tegova R, Kivi G, Hõrak R, Kivisaar M.

J Bacteriol. 2005 Aug;187(15):5203-13.

38.
39.

Involvement of error-prone DNA polymerase IV in stationary-phase mutagenesis in Pseudomonas putida.

Tegova R, Tover A, Tarassova K, Tark M, Kivisaar M.

J Bacteriol. 2004 May;186(9):2735-44.

40.

Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation.

Neumann G, Teras R, Monson L, Kivisaar M, Schauer F, Heipieper HJ.

Appl Environ Microbiol. 2004 Apr;70(4):1907-12.

41.

IHF is the limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase.

Ilves H, Hõrak R, Teras R, Kivisaar M.

Mol Microbiol. 2004 Mar;51(6):1773-85.

42.
44.
47.
49.

Regulation of the transposase of Tn4652 by the transposon-encoded protein TnpC.

Hõrak R, Kivisaar M.

J Bacteriol. 1999 Oct;181(20):6312-8.

Supplemental Content

Loading ...
Support Center