Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 120

1.

Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks.

Wang S, Herzog ED, Kiss IZ, Schwartz WJ, Bloch G, Sebek M, Granados-Fuentes D, Wang L, Li JS.

Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9300-9305. doi: 10.1073/pnas.1721286115. Epub 2018 Aug 27.

2.

Edge-Based Compartmental Modelling of an SIR Epidemic on a Dual-Layer Static-Dynamic Multiplex Network with Tunable Clustering.

Barnard RC, Kiss IZ, Berthouze L, Miller JC.

Bull Math Biol. 2018 Aug 22. doi: 10.1007/s11538-018-0484-5. [Epub ahead of print]

PMID:
30136212
3.

Universal relations of local order parameters for partially synchronized oscillators.

Omel'chenko OE, Sebek M, Kiss IZ.

Phys Rev E. 2018 Jun;97(6-1):062207. doi: 10.1103/PhysRevE.97.062207.

PMID:
30011585
4.

Bursting endemic bubbles in an adaptive network.

Sherborne N, Blyuss KB, Kiss IZ.

Phys Rev E. 2018 Apr;97(4-1):042306. doi: 10.1103/PhysRevE.97.042306.

PMID:
29758745
5.

Pairwise approximation for SIR-type network epidemics with non-Markovian recovery.

Röst G, Vizi Z, Kiss IZ.

Proc Math Phys Eng Sci. 2018 Feb;474(2210):20170695. doi: 10.1098/rspa.2017.0695. Epub 2018 Feb 21.

PMID:
29507514
6.

Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions.

Bick C, Sebek M, Kiss IZ.

Phys Rev Lett. 2017 Oct 20;119(16):168301. doi: 10.1103/PhysRevLett.119.168301. Epub 2017 Oct 19.

PMID:
29099217
7.

Experimental phase synchronization detection in non-phase coherent chaotic systems by using the discrete complex wavelet approach.

Ferreira MT, Follmann R, Domingues MO, Macau EEN, Kiss IZ.

Chaos. 2017 Aug;27(8):083122. doi: 10.1063/1.4999908.

PMID:
28863491
8.

Mean-field models for non-Markovian epidemics on networks.

Sherborne N, Miller JC, Blyuss KB, Kiss IZ.

J Math Biol. 2018 Feb;76(3):755-778. doi: 10.1007/s00285-017-1155-0. Epub 2017 Jul 6.

9.

Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.

Zou W, Sebek M, Kiss IZ, Kurths J.

Chaos. 2017 Jun;27(6):061101. doi: 10.1063/1.4984927.

PMID:
28679221
10.

Stationary patterns in star networks of bistable units: Theory and application to chemical reactions.

Kouvaris NE, Sebek M, Iribarne A, Díaz-Guilera A, Kiss IZ.

Phys Rev E. 2017 Apr;95(4-1):042203. doi: 10.1103/PhysRevE.95.042203. Epub 2017 Apr 10.

11.
12.

Dual kinetic curves in reversible electrochemical systems.

Hankins MJ, Yablonsky GS, Kiss IZ.

PLoS One. 2017 Mar 30;12(3):e0173786. doi: 10.1371/journal.pone.0173786. eCollection 2017.

13.
14.

Self-Organized Stationary Patterns in Networks of Bistable Chemical Reactions.

Kouvaris NE, Sebek M, Mikhailov AS, Kiss IZ.

Angew Chem Int Ed Engl. 2016 Oct 10;55(42):13267-13270. doi: 10.1002/anie.201607030.

PMID:
27654486
15.

Compact pairwise models for epidemics with multiple infectious stages on degree heterogeneous and clustered networks.

Sherborne N, Blyuss KB, Kiss IZ.

J Theor Biol. 2016 Oct 21;407:387-400. doi: 10.1016/j.jtbi.2016.07.015. Epub 2016 Jul 14.

PMID:
27423527
16.

Phase-selective entrainment of nonlinear oscillator ensembles.

Zlotnik A, Nagao R, Kiss IZ, Li JS.

Nat Commun. 2016 Mar 18;7:10788. doi: 10.1038/ncomms10788.

17.

Complex Rotating Waves and Long Transients in a Ring Network of Electrochemical Oscillators with Sparse Random Cross-Connections.

Sebek M, Tönjes R, Kiss IZ.

Phys Rev Lett. 2016 Feb 12;116(6):068701. doi: 10.1103/PhysRevLett.116.068701. Epub 2016 Feb 11.

PMID:
26919024
18.

Solvable non-Markovian dynamic network.

Georgiou N, Kiss IZ, Scalas E.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042801. doi: 10.1103/PhysRevE.92.042801. Epub 2015 Oct 2.

PMID:
26565283
19.

Dynamics of Multi-stage Infections on Networks.

Sherborne N, Blyuss KB, Kiss IZ.

Bull Math Biol. 2015 Oct;77(10):1909-33. doi: 10.1007/s11538-015-0109-1. Epub 2015 Sep 24.

20.

Generalization of Pairwise Models to non-Markovian Epidemics on Networks.

Kiss IZ, Röst G, Vizi Z.

Phys Rev Lett. 2015 Aug 14;115(7):078701. Epub 2015 Aug 13.

PMID:
26317749
21.

Restoration of rhythmicity in diffusively coupled dynamical networks.

Zou W, Senthilkumar DV, Nagao R, Kiss IZ, Tang Y, Koseska A, Duan J, Kurths J.

Nat Commun. 2015 Jul 15;6:7709. doi: 10.1038/ncomms8709.

22.

Delayed feedback induced multirhythmicity in the oscillatory electrodissolution of copper.

Nagy T, Verner E, Gáspár V, Kori H, Kiss IZ.

Chaos. 2015 Jun;25(6):064608. doi: 10.1063/1.4921694.

PMID:
26117133
23.
24.

Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis.

Szabó-Solticzky A, Berthouze L, Kiss IZ, Simon PL.

J Math Biol. 2016 Apr;72(5):1153-76. doi: 10.1007/s00285-015-0902-3. Epub 2015 Jun 11.

PMID:
26063525
25.

Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition.

Ritchie M, Berthouze L, Kiss IZ.

J Math Biol. 2016 Jan;72(1-2):255-81. doi: 10.1007/s00285-015-0884-1. Epub 2015 Apr 17.

26.

Measuring synchrony in the mammalian central circadian circuit.

Herzog ED, Kiss IZ, Mazuski C.

Methods Enzymol. 2015;552:3-22. doi: 10.1016/bs.mie.2014.10.042. Epub 2014 Dec 26. Review.

27.

Spatially distributed current oscillations with electrochemical reactions in microfluidic flow cells.

Bîrzu A, Jia Y, Sankuratri V, Liu Y, Kiss IZ.

Chemphyschem. 2015 Feb 23;16(3):555-66. doi: 10.1002/cphc.201402631. Epub 2015 Jan 16.

PMID:
25598243
28.

Pairwise and edge-based models of epidemic dynamics on correlated weighted networks.

Rattana P, Miller JC, Kiss IZ.

Math Model Nat Phenom. 2014 Apr 24;9(2):58-81.

29.

Epidemic spread in networks: Existing methods and current challenges.

Miller JC, Kiss IZ.

Math Model Nat Phenom. 2014 Jan;9(2):4-42.

30.

Impact of constrained rewiring on network structure and node dynamics.

Rattana P, Berthouze L, Kiss IZ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052806. Epub 2014 Nov 11.

PMID:
25493833
31.

Analysis of an epidemic model with awareness decay on regular random networks.

Juher D, Kiss IZ, Saldaña J.

J Theor Biol. 2015 Jan 21;365:457-68. doi: 10.1016/j.jtbi.2014.10.013. Epub 2014 Oct 23.

PMID:
25452138
32.

Entropy of weighted recurrence plots.

Eroglu D, Peron TK, Marwan N, Rodrigues FA, Costa Lda F, Sebek M, Kiss IZ, Kurths J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042919. Epub 2014 Oct 21.

PMID:
25375579
33.

Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions.

Wickramasinghe M, Kiss IZ.

Phys Chem Chem Phys. 2014 Sep 14;16(34):18360-9. doi: 10.1039/c4cp02249a.

PMID:
25069401
34.

Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.

Kori H, Kuramoto Y, Jain S, Kiss IZ, Hudson JL.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062906. Epub 2014 Jun 10.

PMID:
25019850
35.

Identification of Criticality in Neuronal Avalanches: II. A Theoretical and Empirical Investigation of the Driven Case.

Hartley C, Taylor TJ, Kiss IZ, Farmer SF, Berthouze L.

J Math Neurosci. 2014 Apr 25;4:9. doi: 10.1186/2190-8567-4-9. eCollection 2014.

36.

Exact deterministic representation of Markovian SIR epidemics on networks with and without loops.

Kiss IZ, Morris CG, Sélley F, Simon PL, Wilkinson RR.

J Math Biol. 2015 Feb;70(3):437-64. doi: 10.1007/s00285-014-0772-0. Epub 2014 Mar 4.

PMID:
24590574
37.

Higher-order structure and epidemic dynamics in clustered networks.

Ritchie M, Berthouze L, House T, Kiss IZ.

J Theor Biol. 2014 May 7;348:21-32. doi: 10.1016/j.jtbi.2014.01.025. Epub 2014 Jan 30.

38.

Synchronization of electrochemical oscillators with differential coupling.

Wickramasinghe M, Kiss IZ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062911. Epub 2013 Dec 10.

PMID:
24483535
39.

Exact Equations for SIR Epidemics on Tree Graphs.

Sharkey KJ, Kiss IZ, Wilkinson RR, Simon PL.

Bull Math Biol. 2015 Apr;77(4):614-45. doi: 10.1007/s11538-013-9923-5. Epub 2013 Dec 18.

40.

Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns.

Wickramasinghe M, Kiss IZ.

PLoS One. 2013 Nov 15;8(11):e80586. doi: 10.1371/journal.pone.0080586. eCollection 2013.

41.

Optimal waveform for fast entrainment of weakly forced nonlinear oscillators.

Zlotnik A, Chen Y, Kiss IZ, Tanaka HA, Li JS.

Phys Rev Lett. 2013 Jul 12;111(2):024102. Epub 2013 Jul 9.

PMID:
23889405
42.

Interdependency and hierarchy of exact and approximate epidemic models on networks.

Taylor TJ, Kiss IZ.

J Math Biol. 2014 Jul;69(1):183-211. doi: 10.1007/s00285-013-0699-x. Epub 2013 Jun 6.

PMID:
23739839
43.

Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case.

Taylor TJ, Hartley C, Simon PL, Kiss IZ, Berthouze L.

J Math Neurosci. 2013 Apr 23;3(1):5. doi: 10.1186/2190-8567-3-5.

44.

A class of pairwise models for epidemic dynamics on weighted networks.

Rattana P, Blyuss KB, Eames KT, Kiss IZ.

Bull Math Biol. 2013 Mar;75(3):466-90. doi: 10.1007/s11538-013-9816-7. Epub 2013 Feb 2.

PMID:
23377627
45.

Phase coherence and attractor geometry of chaotic electrochemical oscillators.

Zou Y, Donner RV, Wickramasinghe M, Kiss IZ, Small M, Kurths J.

Chaos. 2012 Sep;22(3):033130.

PMID:
23020469
46.

Approximating evolutionary dynamics on networks using a Neighbourhood Configuration model.

Hadjichrysanthou C, Broom M, Kiss IZ.

J Theor Biol. 2012 Nov 7;312:13-21. doi: 10.1016/j.jtbi.2012.07.015. Epub 2012 Jul 27.

PMID:
22846163
47.

New moment closures based on a priori distributions with applications to epidemic dynamics.

Kiss IZ, Simon PL.

Bull Math Biol. 2012 Jul;74(7):1501-15. doi: 10.1007/s11538-012-9723-3. Epub 2012 Apr 4.

PMID:
22476747
48.

Epidemic threshold and control in a dynamic network.

Taylor M, Taylor TJ, Kiss IZ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):016103. Epub 2012 Jan 5.

PMID:
22400621
49.

Models to capture the potential for disease transmission in domestic sheep flocks.

Schley D, Whittle S, Taylor M, Kiss IZ.

Prev Vet Med. 2012 Sep 15;106(2):174-84. doi: 10.1016/j.prevetmed.2012.01.023. Epub 2012 Feb 17.

PMID:
22341734
50.

Transcription-based oscillator model for light-induced splitting as antiphase circadian gene expression in the suprachiasmatic nuclei.

Schroder S, Herzog ED, Kiss IZ.

J Biol Rhythms. 2012 Feb;27(1):79-90. doi: 10.1177/0748730411429659.

PMID:
22306976

Supplemental Content

Support Center