Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 39

1.

Single-Stranded DNA-Packaged Polyplex Micelle as Adeno-Associated-Virus-Inspired Compact Vector to Systemically Target Stroma-Rich Pancreatic Cancer.

Tockary TA, Foo W, Dirisala A, Chen Q, Uchida S, Osawa S, Mochida Y, Liu X, Kinoh H, Cabral H, Osada K, Kataoka K.

ACS Nano. 2019 Nov 26;13(11):12732-12742. doi: 10.1021/acsnano.9b04676. Epub 2019 Oct 31.

PMID:
31647640
2.

In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers.

Watanabe S, Hayashi K, Toh K, Kim HJ, Liu X, Chaya H, Fukushima S, Katsushima K, Kondo Y, Uchida S, Ogura S, Nomoto T, Takemoto H, Cabral H, Kinoh H, Tanaka HY, Kano MR, Matsumoto Y, Fukuhara H, Uchida S, Nangaku M, Osada K, Nishiyama N, Miyata K, Kataoka K.

Nat Commun. 2019 Apr 24;10(1):1894. doi: 10.1038/s41467-019-09856-w.

3.

Therapeutic Polymersome Nanoreactors with Tumor-Specific Activable Cascade Reactions for Cooperative Cancer Therapy.

Ke W, Li J, Mohammed F, Wang Y, Tou K, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, Kataoka K, Ge Z.

ACS Nano. 2019 Feb 26;13(2):2357-2369. doi: 10.1021/acsnano.8b09082. Epub 2019 Feb 1.

PMID:
30699292
4.

Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells.

Yi Y, Kim HJ, Zheng M, Mi P, Naito M, Kim BS, Min HS, Hayashi K, Perche F, Toh K, Liu X, Mochida Y, Kinoh H, Cabral H, Miyata K, Kataoka K.

J Control Release. 2019 Feb 10;295:268-277. doi: 10.1016/j.jconrel.2019.01.006. Epub 2019 Jan 9.

PMID:
30639386
5.

Effective treatment of drug resistant recurrent breast tumors harboring cancer stem-like cells by staurosporine/epirubicin co-loaded polymeric micelles.

Zhang J, Kinoh H, Hespel L, Liu X, Quader S, Martin J, Chida T, Cabral H, Kataoka K.

J Control Release. 2017 Oct 28;264:127-135. doi: 10.1016/j.jconrel.2017.08.025. Epub 2017 Aug 24.

PMID:
28842317
6.

cRGD peptide installation on cisplatin-loaded nanomedicines enhances efficacy against locally advanced head and neck squamous cell carcinoma bearing cancer stem-like cells.

Miyano K, Cabral H, Miura Y, Matsumoto Y, Mochida Y, Kinoh H, Iwata C, Nagano O, Saya H, Nishiyama N, Kataoka K, Yamasoba T.

J Control Release. 2017 Sep 10;261:275-286. doi: 10.1016/j.jconrel.2017.06.021. Epub 2017 Jun 27.

PMID:
28666729
7.

Nanomedicines Eradicating Cancer Stem-like Cells in Vivo by pH-Triggered Intracellular Cooperative Action of Loaded Drugs.

Kinoh H, Miura Y, Chida T, Liu X, Mizuno K, Fukushima S, Morodomi Y, Nishiyama N, Cabral H, Kataoka K.

ACS Nano. 2016 Jun 28;10(6):5643-55. doi: 10.1021/acsnano.6b00900. Epub 2016 Apr 25.

8.

Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety.

Uchida S, Kinoh H, Ishii T, Matsui A, Tockary TA, Takeda KM, Uchida H, Osada K, Itaka K, Kataoka K.

Biomaterials. 2016 Mar;82:221-8. doi: 10.1016/j.biomaterials.2015.12.031. Epub 2015 Dec 31.

PMID:
26763736
9.

cRGD-installed polymeric micelles loading platinum anticancer drugs enable cooperative treatment against lymph node metastasis.

Makino J, Cabral H, Miura Y, Matsumoto Y, Wang M, Kinoh H, Mochida Y, Nishiyama N, Kataoka K.

J Control Release. 2015 Dec 28;220(Pt B):783-91. doi: 10.1016/j.jconrel.2015.10.017. Epub 2015 Oct 22.

PMID:
26474676
10.

Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation.

Wu H, Cabral H, Toh K, Mi P, Chen YC, Matsumoto Y, Yamada N, Liu X, Kinoh H, Miura Y, Kano MR, Nishihara H, Nishiyama N, Kataoka K.

J Control Release. 2014 Sep 10;189:1-10. doi: 10.1016/j.jconrel.2014.06.018. Epub 2014 Jun 20.

PMID:
24956488
11.

Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy.

Quader S, Cabral H, Mochida Y, Ishii T, Liu X, Toh K, Kinoh H, Miura Y, Nishiyama N, Kataoka K.

J Control Release. 2014 Aug 28;188:67-77. doi: 10.1016/j.jconrel.2014.05.048. Epub 2014 Jun 2.

PMID:
24892974
12.

Homo-catiomer integration into PEGylated polyplex micelle from block-catiomer for systemic anti-angiogenic gene therapy for fibrotic pancreatic tumors.

Chen Q, Osada K, Ishii T, Oba M, Uchida S, Tockary TA, Endo T, Ge Z, Kinoh H, Kano MR, Itaka K, Kataoka K.

Biomaterials. 2012 Jun;33(18):4722-30. doi: 10.1016/j.biomaterials.2012.03.017. Epub 2012 Mar 22.

PMID:
22444644
13.

BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression.

Morodomi Y, Yano T, Kinoh H, Harada Y, Saito S, Kyuragi R, Yoshida K, Onimaru M, Shoji F, Yoshida T, Ito K, Shikada Y, Maruyama R, Hasegawa M, Maehara Y, Yonemitsu Y.

Mol Ther. 2012 Apr;20(4):769-77. doi: 10.1038/mt.2011.305. Epub 2012 Feb 7.

14.

RIG-I helicase-independent pathway in sendai virus-activated dendritic cells is critical for preventing lung metastasis of AT6.3 prostate cancer.

Kato T, Ueda Y, Kinoh H, Yoneyama Y, Matsunaga A, Komaru A, Harada Y, Suzuki H, Komiya A, Shibata S, Hasegawa M, Hayashi H, Ichikawa T, Yonemitsu Y.

Neoplasia. 2010 Nov;12(11):906-14.

15.

Urokinase-targeted fusion by oncolytic Sendai virus eradicates orthotopic glioblastomas by pronounced synergy with interferon-β gene.

Hasegawa Y, Kinoh H, Iwadate Y, Onimaru M, Ueda Y, Harada Y, Saito S, Furuya A, Saegusa T, Morodomi Y, Hasegawa M, Saito S, Aoki I, Saeki N, Yonemitsu Y.

Mol Ther. 2010 Oct;18(10):1778-86. doi: 10.1038/mt.2010.138. Epub 2010 Jul 6.

16.

Sustained and NK/CD4+ T cell-dependent efficient prevention of lung metastasis induced by dendritic cells harboring recombinant Sendai virus.

Komaru A, Ueda Y, Furuya A, Tanaka S, Yoshida K, Kato T, Kinoh H, Harada Y, Suzuki H, Inoue M, Hasegawa M, Ichikawa T, Yonemitsu Y.

J Immunol. 2009 Oct 1;183(7):4211-9. doi: 10.4049/jimmunol.0803845. Epub 2009 Sep 4.

17.

Cytokine-based log-scale expansion of functional murine dendritic cells.

Harada Y, Ueda Y, Kinoh H, Komaru A, Fuji-Ogawa T, Furuya A, Iida A, Hasegawa M, Ichikawa T, Yonemitsu Y.

PLoS One. 2009 Aug 18;4(8):e6674. doi: 10.1371/journal.pone.0006674.

18.

Polymeric osteopontin employs integrin alpha9beta1 as a receptor and attracts neutrophils by presenting a de novo binding site.

Nishimichi N, Higashikawa F, Kinoh HH, Tateishi Y, Matsuda H, Yokosaki Y.

J Biol Chem. 2009 May 29;284(22):14769-76. doi: 10.1074/jbc.M901515200. Epub 2009 Apr 3.

19.

Generation of optimized and urokinase-targeted oncolytic Sendai virus vectors applicable for various human malignancies.

Kinoh H, Inoue M, Komaru A, Ueda Y, Hasegawa M, Yonemitsu Y.

Gene Ther. 2009 Mar;16(3):392-403. doi: 10.1038/gt.2008.167. Epub 2008 Nov 27.

PMID:
19037241
20.

Non-transmissible Sendai virus encoding granulocyte macrophage colony-stimulating factor is a novel and potent vector system for producing autologous tumor vaccines.

Inoue H, Iga M, Nabeta H, Yokoo T, Suehiro Y, Okano S, Inoue M, Kinoh H, Katagiri T, Takayama K, Yonemitsu Y, Hasegawa M, Nakamura Y, Nakanishi Y, Tani K.

Cancer Sci. 2008 Nov;99(11):2315-26. doi: 10.1111/j.1349-7006.2008.00964.x. Epub 2008 Oct 18.

21.

Immunostimulatory virotherapy using recombinant Sendai virus as a new cancer therapeutic regimen.

Yonemitsu Y, Ueda Y, Kinoh H, Hasegawa M.

Front Biosci. 2008 May 1;13:4953-9. Review.

PMID:
18508560
22.

New cancer therapy using genetically-engineered oncolytic Sendai virus vector.

Kinoh H, Inoue M.

Front Biosci. 2008 Jan 1;13:2327-34. Review.

PMID:
17981715
23.

Immunostimulatory virotherapy using recombinant Sendai virus as a new cancer therapeutic regimen.

Yonemitsu Y, Ueda Y, Kinoh H, Hasegawa M.

Front Biosci. 2008 Jan 1;13:1892-8. Review.

PMID:
17981677
24.

Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats.

Iwadate Y, Inoue M, Saegusa T, Tokusumi Y, Kinoh H, Hasegawa M, Tagawa M, Yamaura A, Shimada H.

Clin Cancer Res. 2005 May 15;11(10):3821-7.

25.

Generation of a recombinant Sendai virus that is selectively activated and lyses human tumor cells expressing matrix metalloproteinases.

Kinoh H, Inoue M, Washizawa K, Yamamoto T, Fujikawa S, Tokusumi Y, Iida A, Nagai Y, Hasegawa M.

Gene Ther. 2004 Jul;11(14):1137-45.

PMID:
15085175
26.

Absence of mechanical allodynia and Abeta-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase.

Komori K, Nonaka T, Okada A, Kinoh H, Hayashita-Kinoh H, Yoshida N, Yana I, Seiki M.

FEBS Lett. 2004 Jan 16;557(1-3):125-8.

27.

Membrane-type 5 matrix metalloproteinase is expressed in differentiated neurons and regulates axonal growth.

Hayashita-Kinoh H, Kinoh H, Okada A, Komori K, Itoh Y, Chiba T, Kajita M, Yana I, Seiki M.

Cell Growth Differ. 2001 Nov;12(11):573-80.

28.

Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration.

Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M.

J Cell Biol. 2001 May 28;153(5):893-904.

30.

Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase.

Itoh Y, Kajita M, Kinoh H, Mori H, Okada A, Seiki M.

J Biol Chem. 1999 Nov 26;274(48):34260-6.

31.
32.

Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases.

Wada K, Sato H, Kinoh H, Kajita M, Yamamoto H, Seiki M.

Gene. 1998 Apr 28;211(1):57-62.

PMID:
9573338
33.

Sea urchin hatching enzyme (envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation.

Nomura K, Shimizu T, Kinoh H, Sendai Y, Inomata M, Suzuki N.

Biochemistry. 1997 Jun 10;36(23):7225-38.

PMID:
9188724
34.

Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay.

Tsunezuka Y, Kinoh H, Takino T, Watanabe Y, Okada Y, Shinagawa A, Sato H, Seiki M.

Cancer Res. 1996 Dec 15;56(24):5678-83.

35.

MT-MMP, the cell surface activator of proMMP-2 (pro-gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis.

Kinoh H, Sato H, Tsunezuka Y, Takino T, Kawashima A, Okada Y, Seiki M.

J Cell Sci. 1996 May;109 ( Pt 5):953-9.

36.
37.

Expression of a putative precursor mRNA for sperm-activating peptide I in accessory cells of the ovary in the sea urchin Hemicentrotus pulcherrimus.

Kinoh H, Shimizu T, Fujimoto H, Suzuki N.

Roux Arch Dev Biol. 1994 Aug;203(7-8):381-388. doi: 10.1007/BF00188686.

PMID:
28305943
38.

Nucleotide sequence of the proton ATPase beta-subunit homologue of the sea urchin Hemicentrotus pulcherrimus.

Satoh Y, Shimizu T, Sendai Y, Kinoh H, Suzuki N.

Zoolog Sci. 1994 Feb;11(1):153-6.

PMID:
7765182
39.

The egg-jelly macromolecule, a fucose sulphate glycoconjugate, originates from the accessory cells of the ovary in the sea urchin Hemicentrotus pulcherrimus.

Abe H, Kinoh H, Oikawa T, Suzuki N.

Roux Arch Dev Biol. 1992 May;201(3):179-189. doi: 10.1007/BF00188717.

PMID:
28305585

Supplemental Content

Support Center