Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 56

1.

H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG.

Byer AS, Shepard EM, Ratzloff MW, Betz JN, King PW, Broderick WE, Broderick JB.

J Biol Inorg Chem. 2019 Sep;24(6):783-792. doi: 10.1007/s00775-019-01709-7. Epub 2019 Sep 6.

PMID:
31493152
2.

The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD<sup/>.

Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL, Hoben JP, Patterson A, Lubner CE, King PW, Peters JW, Bothner B, Miller AF, Adams MWW.

J Biol Chem. 2019 Mar 1;294(9):3271-3283. doi: 10.1074/jbc.RA118.005653. Epub 2018 Dec 19.

PMID:
30567738
3.

A new era for electron bifurcation.

Peters JW, Beratan DN, Bothner B, Dyer RB, Harwood CS, Heiden ZM, Hille R, Jones AK, King PW, Lu Y, Lubner CE, Minteer SD, Mulder DW, Raugei S, Schut GJ, Seefeldt LC, Tokmina-Lukaszewska M, Zadvornyy OA, Zhang P, Adams MW.

Curr Opin Chem Biol. 2018 Dec;47:32-38. doi: 10.1016/j.cbpa.2018.07.026. Epub 2018 Aug 1. Review.

PMID:
30077080
4.

Compositional and structural insights into the nature of the H-cluster precursor on HydF.

Scott AG, Szilagyi RK, Mulder DW, Ratzloff MW, Byer AS, King PW, Broderick WE, Shepard EM, Broderick JB.

Dalton Trans. 2018 Jul 17;47(28):9521-9535. doi: 10.1039/c8dt01654b.

PMID:
29964288
5.

Terminal Hydride Species in [FeFe]-Hydrogenases Are Vibrationally Coupled to the Active Site Environment.

Pham CC, Mulder DW, Pelmenschikov V, King PW, Ratzloff MW, Wang H, Mishra N, Alp EE, Zhao J, Hu MY, Tamasaku K, Yoda Y, Cramer SP.

Angew Chem Int Ed Engl. 2018 Aug 13;57(33):10605-10609. doi: 10.1002/anie.201805144. Epub 2018 Jul 23.

PMID:
29923293
6.

CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

Ratzloff MW, Artz JH, Mulder DW, Collins RT, Furtak TE, King PW.

J Am Chem Soc. 2018 Jun 20;140(24):7623-7628. doi: 10.1021/jacs.8b03072. Epub 2018 Jun 7.

PMID:
29792026
7.

Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris.

Duan HD, Lubner CE, Tokmina-Lukaszewska M, Gauss GH, Bothner B, King PW, Peters JW, Miller AF.

J Biol Chem. 2018 Mar 30;293(13):4688-4701. doi: 10.1074/jbc.RA117.000707. Epub 2018 Feb 9.

8.

Structural Characterization of Poised States in the Oxygen Sensitive Hydrogenases and Nitrogenases.

Artz JH, Zadvornyy OA, Mulder DW, King PW, Peters JW.

Methods Enzymol. 2017;595:213-259. doi: 10.1016/bs.mie.2017.07.005. Epub 2017 Aug 21. Review.

PMID:
28882202
9.

Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

Zhang P, Yuly JL, Lubner CE, Mulder DW, King PW, Peters JW, Beratan DN.

Acc Chem Res. 2017 Sep 19;50(9):2410-2417. doi: 10.1021/acs.accounts.7b00327. Epub 2017 Sep 6.

PMID:
28876046
10.

Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase.

Ratzloff MW, Wilker MB, Mulder DW, Lubner CE, Hamby H, Brown KA, Dukovic G, King PW.

J Am Chem Soc. 2017 Sep 20;139(37):12879-12882. doi: 10.1021/jacs.7b04216. Epub 2017 Sep 6.

PMID:
28851216
11.

The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5.

Therien JB, Artz JH, Poudel S, Hamilton TL, Liu Z, Noone SM, Adams MWW, King PW, Bryant DA, Boyd ES, Peters JW.

Front Microbiol. 2017 Jul 12;8:1305. doi: 10.3389/fmicb.2017.01305. eCollection 2017.

12.

The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis.

Ledbetter RN, Garcia Costas AM, Lubner CE, Mulder DW, Tokmina-Lukaszewska M, Artz JH, Patterson A, Magnuson TS, Jay ZJ, Duan HD, Miller J, Plunkett MH, Hoben JP, Barney BM, Carlson RP, Miller AF, Bothner B, King PW, Peters JW, Seefeldt LC.

Biochemistry. 2017 Aug 15;56(32):4177-4190. doi: 10.1021/acs.biochem.7b00389. Epub 2017 Aug 3.

PMID:
28704608
13.

Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron-Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis.

Artz JH, Mulder DW, Ratzloff MW, Lubner CE, Zadvornyy OA, LeVan AX, Williams SG, Adams MWW, Jones AK, King PW, Peters JW.

J Am Chem Soc. 2017 Jul 19;139(28):9544-9550. doi: 10.1021/jacs.7b02099. Epub 2017 Jul 6.

PMID:
28635269
14.

Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation.

Hoben JP, Lubner CE, Ratzloff MW, Schut GJ, Nguyen DMN, Hempel KW, Adams MWW, King PW, Miller AF.

J Biol Chem. 2017 Aug 25;292(34):14039-14049. doi: 10.1074/jbc.M117.794214. Epub 2017 Jun 14.

15.

Mechanistic insights into energy conservation by flavin-based electron bifurcation.

Lubner CE, Jennings DP, Mulder DW, Schut GJ, Zadvornyy OA, Hoben JP, Tokmina-Lukaszewska M, Berry L, Nguyen DM, Lipscomb GL, Bothner B, Jones AK, Miller AF, King PW, Adams MWW, Peters JW.

Nat Chem Biol. 2017 Jun;13(6):655-659. doi: 10.1038/nchembio.2348. Epub 2017 Apr 10.

PMID:
28394885
16.

Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase.

Mulder DW, Guo Y, Ratzloff MW, King PW.

J Am Chem Soc. 2017 Jan 11;139(1):83-86. doi: 10.1021/jacs.6b11409. Epub 2016 Dec 21.

PMID:
27973768
17.

Unification of [FeFe]-hydrogenases into three structural and functional groups.

Poudel S, Tokmina-Lukaszewska M, Colman DR, Refai M, Schut GJ, King PW, Maness PC, Adams MW, Peters JW, Bothner B, Boyd ES.

Biochim Biophys Acta. 2016 Sep;1860(9):1910-21. doi: 10.1016/j.bbagen.2016.05.034. Epub 2016 May 27.

PMID:
27241847
18.

Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode.

Zhao Y, Anderson NC, Ratzloff MW, Mulder DW, Zhu K, Turner JA, Neale NR, King PW, Branz HM.

ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14481-7. doi: 10.1021/acsami.6b00189. Epub 2016 Jun 2.

PMID:
27219350
19.

Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW.

Science. 2016 Apr 22;352(6284):448-50. doi: 10.1126/science.aaf2091.

20.

Electron bifurcation.

Peters JW, Miller AF, Jones AK, King PW, Adams MW.

Curr Opin Chem Biol. 2016 Apr;31:146-52. doi: 10.1016/j.cbpa.2016.03.007. Epub 2016 Mar 23. Review.

PMID:
27016613
21.

Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1.

Boehm M, Alahuhta M, Mulder DW, Peden EA, Long H, Brunecky R, Lunin VV, King PW, Ghirardi ML, Dubini A.

Photosynth Res. 2016 Apr;128(1):45-57. doi: 10.1007/s11120-015-0198-6. Epub 2015 Nov 3.

22.

The effect of a C298D mutation in CaHydA [FeFe]-hydrogenase: Insights into the protein-metal cluster interaction by EPR and FTIR spectroscopic investigation.

Morra S, Maurelli S, Chiesa M, Mulder DW, Ratzloff MW, Giamello E, King PW, Gilardi G, Valetti F.

Biochim Biophys Acta. 2016 Jan;1857(1):98-106. doi: 10.1016/j.bbabio.2015.10.005. Epub 2015 Oct 19.

23.

Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes.

Utterback JK, Wilker MB, Brown KA, King PW, Eaves JD, Dukovic G.

Phys Chem Chem Phys. 2015 Feb 28;17(8):5538-42. doi: 10.1039/c4cp05993j.

PMID:
25623885
24.

[FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster.

Swanson KD, Ratzloff MW, Mulder DW, Artz JH, Ghose S, Hoffman A, White S, Zadvornyy OA, Broderick JB, Bothner B, King PW, Peters JW.

J Am Chem Soc. 2015 Feb 11;137(5):1809-16. doi: 10.1021/ja510169s. Epub 2015 Jan 29.

PMID:
25579778
25.

[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.

Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MW.

Biochim Biophys Acta. 2015 Jun;1853(6):1350-69. doi: 10.1016/j.bbamcr.2014.11.021. Epub 2014 Nov 24. Review.

26.

Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase.

Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW.

J Am Chem Soc. 2014 Oct 29;136(43):15394-402. doi: 10.1021/ja508629m. Epub 2014 Oct 21.

PMID:
25286239
27.

Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

Brown KA, Song Q, Mulder DW, King PW.

ACS Nano. 2014 Oct 28;8(10):10790-8. doi: 10.1021/nn504561v. Epub 2014 Oct 1.

PMID:
25244026
28.

Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation.

Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G.

J Am Chem Soc. 2014 Mar 19;136(11):4316-24. doi: 10.1021/ja413001p. Epub 2014 Mar 7.

PMID:
24564271
29.

Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study.

Long H, King PW, Chang CH.

J Phys Chem B. 2014 Jan 30;118(4):890-900. doi: 10.1021/jp408621r. Epub 2014 Jan 21.

PMID:
24405487
30.

Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii.

Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A.

J Biol Chem. 2013 Dec 6;288(49):35192-209. doi: 10.1074/jbc.M113.483727. Epub 2013 Oct 7.

31.

EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii.

Mulder DW, Ratzloff MW, Shepard EM, Byer AS, Noone SM, Peters JW, Broderick JB, King PW.

J Am Chem Soc. 2013 May 8;135(18):6921-9. doi: 10.1021/ja4000257. Epub 2013 Apr 24.

PMID:
23578101
32.

Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

King PW.

Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):949-57. doi: 10.1016/j.bbabio.2013.03.006. Epub 2013 Mar 27. Review.

33.

Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase.

Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, Valetti F.

PLoS One. 2012;7(10):e48400. doi: 10.1371/journal.pone.0048400. Epub 2012 Oct 25.

34.

Optimized expression and purification for high-activity preparations of algal [FeFe]-hydrogenase.

Yacoby I, Tegler LT, Pochekailov S, Zhang S, King PW.

PLoS One. 2012;7(4):e35886. doi: 10.1371/journal.pone.0035886. Epub 2012 Apr 26.

35.

Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes.

Brown KA, Wilker MB, Boehm M, Dukovic G, King PW.

J Am Chem Soc. 2012 Mar 28;134(12):5627-36. doi: 10.1021/ja2116348. Epub 2012 Mar 15.

PMID:
22352762
36.

Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging.

Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, Moore AL, Moore TA.

J Am Chem Soc. 2012 Jan 25;134(3):1577-82. doi: 10.1021/ja207461t. Epub 2011 Oct 3.

PMID:
21916466
37.

Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode.

Morra S, Valetti F, Sadeghi SJ, King PW, Meyer T, Gilardi G.

Chem Commun (Camb). 2011 Oct 14;47(38):10566-8. doi: 10.1039/c1cc14535e. Epub 2011 Aug 24.

PMID:
21863186
38.

Insights into [FeFe]-hydrogenase structure, mechanism, and maturation.

Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW.

Structure. 2011 Aug 10;19(8):1038-52. doi: 10.1016/j.str.2011.06.008. Review.

39.

Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro.

Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S.

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9396-401. doi: 10.1073/pnas.1103659108. Epub 2011 May 23.

40.

High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.

Svedružić D, Blackburn JL, Tenent RC, Rocha JD, Vinzant TB, Heben MJ, King PW.

J Am Chem Soc. 2011 Mar 30;133(12):4299-306. doi: 10.1021/ja104785e. Epub 2011 Mar 8.

PMID:
21384925
41.

Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production.

Brown KA, Dayal S, Ai X, Rumbles G, King PW.

J Am Chem Soc. 2010 Jul 21;132(28):9672-80. doi: 10.1021/ja101031r.

PMID:
20583755
42.

Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production.

English CM, Eckert C, Brown K, Seibert M, King PW.

Dalton Trans. 2009 Dec 7;(45):9970-8. doi: 10.1039/b913426n. Epub 2009 Oct 27. Review. Erratum in: Dalton Trans. 2010 Dec 28;39(48):11688.

PMID:
19904422
43.

Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association.

Long H, King PW, Ghirardi ML, Kim K.

J Phys Chem A. 2009 Apr 23;113(16):4060-7. doi: 10.1021/jp810409z.

PMID:
19317477
44.

Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase.

Blackburn JL, Svedruzic D, McDonald TJ, Kim YH, King PW, Heben MJ.

Dalton Trans. 2008 Oct 28;(40):5454-61. doi: 10.1039/b806379f. Epub 2008 Jul 24.

PMID:
19082027
45.

Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii.

Long H, Chang CH, King PW, Ghirardi ML, Kim K.

Biophys J. 2008 Oct;95(8):3753-66. doi: 10.1529/biophysj.107.127548. Epub 2008 Jul 11.

46.

[FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell.

Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA.

J Am Chem Soc. 2008 Feb 13;130(6):2015-22. doi: 10.1021/ja077691k. Epub 2008 Jan 19.

PMID:
18205358
47.

Wiring-up hydrogenase with single-walled carbon nanotubes.

McDonald TJ, Svedruzic D, Kim YH, Blackburn JL, Zhang SB, King PW, Heben MJ.

Nano Lett. 2007 Nov;7(11):3528-34. Epub 2007 Oct 30. Erratum in: Nano Lett. 2008 Jun;8(6):1783.

PMID:
17967044
48.

Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.

Chang CH, King PW, Ghirardi ML, Kim K.

Biophys J. 2007 Nov 1;93(9):3034-45. Epub 2007 Jul 27.

49.

In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation.

McGlynn SE, Ruebush SS, Naumov A, Nagy LE, Dubini A, King PW, Broderick JB, Posewitz MC, Peters JW.

J Biol Inorg Chem. 2007 May;12(4):443-7. Epub 2007 Mar 20.

PMID:
17372774
50.

Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.

Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, Ahmann D, Posewitz MC.

Biotechnol Lett. 2007 Mar;29(3):421-30. Epub 2006 Dec 29.

PMID:
17195059

Supplemental Content

Support Center