Format

Send to

Choose Destination
eNeuro. 2019 Jan 7;5(6). pii: ENEURO.0261-18.2018. doi: 10.1523/ENEURO.0261-18.2018. eCollection 2018 Nov-Dec.

The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals.

Author information

1
Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802.
2
Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802.
3
Department of Neural and Behavioral Sciences, Penn State University, University Park, Pennsylvania 16802.
4
Department of Neurosurgery, Penn State University, University Park, Pennsylvania 16802.

Abstract

A multielectrode system that can address widely separated targets at multiple sites across multiple brain regions with independent implant angling is needed to investigate neural function and signaling in systems and circuits of small animals. Here, we present the systemDrive, a novel multisite, multiregion microdrive that is capable of moving microwire electrode bundles into targets along independent and nonparallel drive trajectories. Our design decouples the stereotaxic surgical placement of individual guide cannulas for each trajectory from the placement of a flexible drive structure. This separation enables placement of many microwire multitrodes along widely spaced and independent drive axes with user-set electrode trajectories and depths from a single microdrive body, and achieves stereotaxic precision with each. The system leverages tight tube-cannula tolerances and geometric constraints on flexible drive axes to ensure concentric alignment of electrode bundles within guide cannulas. Additionally, the headmount and microdrive both have an open-center design to allow for the placement of additional sensing modalities. This design is the first, in the context of small rodent chronic research, to provide the capability to finely position microwires through multiple widely distributed cell groups, each with stereotaxic precision, along arbitrary and nonparallel trajectories that are not restricted to emanate from a single source. We demonstrate the use of the systemDrive in male Long-Evans rats to observe simultaneous single-unit and multiunit activity from multiple widely separated sleep-wake regulatory brainstem cell groups, along with cortical and hippocampal activity, during free behavior over multiple many-day continuous recording periods.

KEYWORDS:

chronic; electrophysiology; freely behaving; microdrive; systems neuroscience; tetrode

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center