Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 51

1.

Centriolar satellites are acentriolar assemblies of centrosomal proteins.

Quarantotti V, Chen JX, Tischer J, Gonzalez Tejedo C, Papachristou EK, D'Santos CS, Kilmartin JV, Miller ML, Gergely F.

EMBO J. 2019 Jul 15;38(14):e101082. doi: 10.15252/embj.2018101082. Epub 2019 Jun 3.

2.

Lessons from yeast: the spindle pole body and the centrosome.

Kilmartin JV.

Philos Trans R Soc Lond B Biol Sci. 2014 Sep 5;369(1650). pii: 20130456. doi: 10.1098/rstb.2013.0456. Review.

3.

Loss of centrioles causes chromosomal instability in vertebrate somatic cells.

Sir JH, Pütz M, Daly O, Morrison CG, Dunning M, Kilmartin JV, Gergely F.

J Cell Biol. 2013 Dec 9;203(5):747-56. doi: 10.1083/jcb.201309038. Epub 2013 Dec 2.

4.

CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response.

Barr AR, Kilmartin JV, Gergely F.

J Cell Biol. 2010 Apr 5;189(1):23-39. doi: 10.1083/jcb.200912163.

5.

Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication.

Li S, Sandercock AM, Conduit P, Robinson CV, Williams RL, Kilmartin JV.

J Cell Biol. 2006 Jun 19;173(6):867-77.

6.

Interactions between centromere complexes in Saccharomyces cerevisiae.

Nekrasov VS, Smith MA, Peak-Chew S, Kilmartin JV.

Mol Biol Cell. 2003 Dec;14(12):4931-46. Epub 2003 Oct 17.

7.
8.

hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells.

DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED.

J Cell Biol. 2002 Nov 25;159(4):549-55. Epub 2002 Nov 18.

10.

Spindle pole body duplication: a model for centrosome duplication?

Adams IR, Kilmartin JV.

Trends Cell Biol. 2000 Aug;10(8):329-35. Review.

PMID:
10884685
11.
12.

Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.

Wigge PA, Jensen ON, Holmes S, Souès S, Mann M, Kilmartin JV.

J Cell Biol. 1998 May 18;141(4):967-77.

13.
14.

The yeast spindle pole body is assembled around a central crystal of Spc42p.

Bullitt E, Rout MP, Kilmartin JV, Akey CW.

Cell. 1997 Jun 27;89(7):1077-86.

17.
18.

A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated.

Kilmartin JV, Dyos SL, Kershaw D, Finch JT.

J Cell Biol. 1993 Dec;123(5):1175-84.

19.
20.

Yeast spindle pole body components.

Rout MP, Kilmartin JV.

Cold Spring Harb Symp Quant Biol. 1991;56:687-92. No abstract available.

PMID:
1819516
21.

Components of the yeast spindle and spindle pole body.

Rout MP, Kilmartin JV.

J Cell Biol. 1990 Nov;111(5 Pt 1):1913-27.

22.
23.

Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line.

Kilmartin JV, Wright B, Milstein C.

J Cell Biol. 1982 Jun;93(3):576-82.

24.

Purification of yeast tubulin by self-assembly in vitro.

Kilmartin JV.

Biochemistry. 1981 Jun 9;20(12):3629-33.

PMID:
7020758
25.

Removal of specific C-terminal residues from human hemoglobin using carboxypeptidases A and B.

Kilmartin JV.

Methods Enzymol. 1981;76:167-71. No abstract available.

PMID:
7329260
26.

Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin.

Kilmartin JV, Fogg JH, Perutz MF.

Biochemistry. 1980 Jul 8;19(14):3189-83. No abstract available.

PMID:
7407039
27.

Identification of residues contributing to the Bohr effect of human haemoglobin.

Perutz MF, Kilmartin JV, Nishikura K, Fogg JH, Butler PJ, Rollema HS.

J Mol Biol. 1980 Apr 15;138(3):649-68. No abstract available.

PMID:
7411620
28.

Response of the Bohr group salt bridges to ligation of the T state of haemoglobin Kansas.

Kilmartin JV, Anderson NL.

J Mol Biol. 1978 Jul 25;123(1):71-87. No abstract available.

PMID:
28419
29.

Role of Bohr group salt bridges in cooperativity in hemoglobin.

Kilmartin JV, Imai K, Jones RT, Faruqui AR, Fogg J, Baldwin JM.

Biochim Biophys Acta. 1978 May 24;534(1):15-25.

PMID:
26416
30.
31.

Interaction of haemoglobin with protons, CO2 and 2,3-diphosphoglycerate.

Kilmartin JV.

Br Med Bull. 1976 Sep;32(3):209-12. Review. No abstract available.

PMID:
10040
32.

Structure and function of haemoglobin Philly (Tyr C1 (35) beta replaced by Phe).

Asakura T, Adachi K, Wiley JS, Fung LW, Ho C, Kilmartin JV, Perutz MF.

J Mol Biol. 1976 Jun 14;104(1):185-95. No abstract available.

PMID:
957431
33.

Influence of globin structures on the state of the heme. Ferrous low spin derivatives.

Perutz MF, Kilmartin JV, Nagai K, Szabo A, Simon SR.

Biochemistry. 1976 Jan 27;15(2):378-87.

PMID:
1247524
34.

Identification of the high and low affinity CO2-binding sites of human haemoglobin.

Perrella M, Kilmartin JV, Fogg J, Rossi-Bernardi L.

Nature. 1975 Aug 28;256(5520):759-61. No abstract available.

PMID:
1153018
35.

Hemoglobin Cochin-Port-Royal: consequences of the replacement of the beta chain C-terminal by an arginine.

Wajcman H, Kilmartin JV, Najman A, Labie D.

Biochim Biophys Acta. 1975 Aug 19;400(2):354-64.

PMID:
240418
36.

Alteration of functional properties associated with the change in quaternary structure in unliganded haemoglobin.

Kilmartin JV, Hewitt JA, Wootton JF.

J Mol Biol. 1975 Apr 5;93(2):203-18. No abstract available.

PMID:
1152051
37.

The alkaline Bohr effect of human hemoglobin.

Kilmartin JV.

Ann N Y Acad Sci. 1974 Nov 29;241(0):465-71. No abstract available.

PMID:
4530673
38.

Role of the alpha-amino groups of the alpha and beta chains of human hemoglobin in oxygen-linked binding of carbon dioxide.

Kilmartin JV, Fogg J, Luzzana M, Rossi-Bernardi L.

J Biol Chem. 1973 Oct 25;248(20):7039-43. No abstract available.

39.

Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates.

Kilmartin JV, Rossi-Bernardi L.

Physiol Rev. 1973 Oct;53(4):836-90. Review. No abstract available.

PMID:
4593770
40.

The ligand-binding properties of desHis (146beta) hemoglobin.

Moffat K, Olson JS, Gibson QH, Kilmartin JV.

J Biol Chem. 1973 Sep 25;248(18):6387-93. No abstract available.

41.
42.

Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin.

Kilmartin JV, Breen JJ, Roberts GC, Ho C.

Proc Natl Acad Sci U S A. 1973 Apr;70(4):1246-9.

43.

The effect of removal of C-terminal residues on cooperative interactions in hemoglobin.

Kilmartin JV, Hewitt JA.

Cold Spring Harb Symp Quant Biol. 1972;36:311-4. No abstract available.

PMID:
4508144
44.
45.

Haemoglobin Hiroshima and the mechanism of the alkaline Bohr effect.

Perutz MF, Pulsinelli P, Eyck LT, Kilmartin JV, Shibata S, Iuchi I, Miyaji T, Hamilton HB.

Nat New Biol. 1971 Aug 4;232(31):147-9. No abstract available.

PMID:
5285571
46.

The binding of carbon dioxide by horse haemoglobin.

Kilmartin JV, Rossi-Bernardi L.

Biochem J. 1971 Aug;124(1):31-45.

47.

Haemoglobin Tak: a variant with additional residues at the end of the beta-chains.

Flatz G, Kinderlerer JL, Kilmartin JV, Lehmann H.

Lancet. 1971 Apr 10;1(7702):732-3. No abstract available.

PMID:
4101432
48.

Inhibition of Bohr effect after removal of C-terminal histidines from haemoglobin beta-chains.

Kilmartin JV, Wootton JF.

Nature. 1970 Nov 21;228(5273):766-7. No abstract available.

PMID:
5472965
49.

Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its alpha-amino groups.

Kilmartin JV, Rossi-Bernardi L.

Nature. 1969 Jun 28;222(5200):1243-6. No abstract available.

PMID:
5789658
50.

Identification of residues responsible for the alkaline Bohr effect in haemoglobin.

Perutz MF, Muirhead H, Mazzarella L, Crowther RA, Greer J, Kilmartin JV.

Nature. 1969 Jun 28;222(5200):1240-3. No abstract available.

PMID:
5789657

Supplemental Content

Loading ...
Support Center