Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Optimization of Ag2O nanostructures with strontium for biological and therapeutic potential.

Kiani FA, Shamraiz U, Badshah A, Tabassum S, Ambreen M, Patujo JA.

Artif Cells Nanomed Biotechnol. 2018 Nov 19:1-9. doi: 10.1080/21691401.2018.1529678. [Epub ahead of print]

PMID:
30449180
2.

Spontaneous transitions of actin-bound tropomyosin toward blocked and closed states.

Kiani FA, Lehman W, Fischer S, Rynkiewicz MJ.

J Gen Physiol. 2019 Jan 7;151(1):4-8. doi: 10.1085/jgp.201812188. Epub 2018 Nov 15.

PMID:
30442774
3.

Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting.

Lehman W, Li X, Kiani FA, Moore JR, Campbell SG, Fischer S, Rynkiewicz MJ.

Biophys J. 2018 Sep 18;115(6):1082-1092. doi: 10.1016/j.bpj.2018.08.017. Epub 2018 Aug 18.

PMID:
30195938
4.

The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism.

Fatima T, Rani S, Fischer S, Efferth T, Kiani FA.

Biophys Chem. 2018 Sep;240:98-106. doi: 10.1016/j.bpc.2018.06.002. Epub 2018 Jun 12.

PMID:
30014892
5.

Tropomyosin Must Interact Weakly with Actin to Effectively Regulate Thin Filament Function.

Rynkiewicz MJ, Prum T, Hollenberg S, Kiani FA, Fagnant PM, Marston SB, Trybus KM, Fischer S, Moore JR, Lehman W.

Biophys J. 2017 Dec 5;113(11):2444-2451. doi: 10.1016/j.bpj.2017.10.004.

6.

Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

Hassan HA, Rani S, Fatima T, Kiani FA, Fischer S.

Biophys Chem. 2017 Nov;230:27-35. doi: 10.1016/j.bpc.2017.08.003. Epub 2017 Aug 15.

PMID:
28941815
8.

ATP-dependent interplay between local and global conformational changes in the myosin motor.

Kiani FA, Fischer S.

Cytoskeleton (Hoboken). 2016 Nov;73(11):643-651. doi: 10.1002/cm.21333. Epub 2016 Sep 26. Review.

PMID:
27583666
9.

Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.

Kiani FA, Fischer S.

Phys Chem Chem Phys. 2016 Jul 27;18(30):20219-33. doi: 10.1039/c6cp01364c.

PMID:
27296627
10.

Advances in quantum simulations of ATPase catalysis in the myosin motor.

Kiani FA, Fischer S.

Curr Opin Struct Biol. 2015 Apr;31:115-23. doi: 10.1016/j.sbi.2015.04.006. Epub 2015 May 22. Review.

PMID:
26005996
11.

Catalytic strategy used by the myosin motor to hydrolyze ATP.

Kiani FA, Fischer S.

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2947-56. doi: 10.1073/pnas.1401862111. Epub 2014 Jul 8.

12.

Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.

Kiani FA, Fischer S.

J Biol Chem. 2013 Dec 6;288(49):35569-80. doi: 10.1074/jbc.M113.500298. Epub 2013 Oct 28.

13.

Structural paradigms in macropolyhedral boranes.

Kiani FA, Hofmann M.

Chemistry. 2008;14(9):2886-93. doi: 10.1002/chem.200701369.

PMID:
18232041
14.

Structural relationships among two vertex sharing macropolyhedral boranes.

Kiani FA, Hofmann M.

Dalton Trans. 2007 Mar 28;(12):1207-13. Epub 2007 Feb 20.

PMID:
17353952
15.

Cluster increments for macropolyhedral boranes.

Kiani FA, Hofmann M.

Dalton Trans. 2006 Dec 14;(46):5515-20. Epub 2006 Oct 6.

PMID:
17117221
16.

Which nido:nido-macropolyhedral boranes are most stable?

Kiani FA, Hofmann M.

Inorg Chem. 2006 Aug 21;45(17):6996-7003.

PMID:
16903759
17.
18.
20.

Structural increment system for 11-vertex nido-boranes and carboranes.

Kiani FA, Hofmann M.

Inorg Chem. 2004 Dec 27;43(26):8561-71.

PMID:
15606207

Supplemental Content

Loading ...
Support Center