Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 9

1.

Sequencing Analysis of Genetic Loci for Resistance for Late Leaf Spot and Rust in Peanut (Arachis hypogaea L.).

Shirasawa K, Bhat RS, Khedikar YP, Sujay V, Kolekar RM, Yeri SB, Sukruth M, Cholin S, Asha B, Pandey MK, Varshney RK, Gowda MVC.

Front Plant Sci. 2018 Nov 26;9:1727. doi: 10.3389/fpls.2018.01727. eCollection 2018.

2.

The transcriptional landscape of polyploid wheat.

Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A; International Wheat Genome Sequencing Consortium, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C.

Science. 2018 Aug 17;361(6403). pii: eaar6089. doi: 10.1126/science.aar6089.

PMID:
30115782
3.

Differential expression of two galactinol synthase isoforms LcGolS1 and LcGolS2 in developing lentil (Lens culinaris Medik. cv CDC Redberry) seeds.

Kannan U, Sharma R, Khedikar Y, Gangola MP, Ganeshan S, Båga M, Chibbar RN.

Plant Physiol Biochem. 2016 Nov;108:422-433. doi: 10.1016/j.plaphy.2016.08.004. Epub 2016 Aug 6.

PMID:
27552180
4.

The developmental transcriptome atlas of the biofuel crop Camelina sativa.

Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, Bollina V, Robinson SJ, Coutu C, Hegedus DD, Sharpe AG, Parkin IA.

Plant J. 2016 Dec;88(5):879-894. doi: 10.1111/tpj.13302.

5.

A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome.

Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IA.

Theor Appl Genet. 2016 Oct;129(10):1887-99. doi: 10.1007/s00122-016-2746-7. Epub 2016 Jun 30.

6.

A reliable and rapid method for soluble sugars and RFO analysis in chickpea using HPAEC-PAD and its comparison with HPLC-RI.

Gangola MP, Jaiswal S, Khedikar YP, Chibbar RN.

Food Chem. 2014 Jul 1;154:127-33. doi: 10.1016/j.foodchem.2013.12.085. Epub 2014 Jan 3.

PMID:
24518324
7.

Genotype and growing environment interaction shows a positive correlation between substrates of raffinose family oligosaccharides (RFO) biosynthesis and their accumulation in chickpea ( Cicer arietinum L.) seeds.

Gangola MP, Khedikar YP, Gaur PM, Båga M, Chibbar RN.

J Agric Food Chem. 2013 May 22;61(20):4943-52. doi: 10.1021/jf3054033. Epub 2013 May 13.

PMID:
23621405
8.

Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.).

Sujay V, Gowda MV, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK.

Mol Breed. 2012 Aug;30(2):773-788. Epub 2011 Nov 22.

9.

A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.).

Khedikar YP, Gowda MV, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK.

Theor Appl Genet. 2010 Sep;121(5):971-84. doi: 10.1007/s00122-010-1366-x. Epub 2010 Jun 6.

Supplemental Content

Loading ...
Support Center