Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 51

1.

Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds.

Carrasco-Cabrera CP, Bell TL, Kertesz MA.

Appl Microbiol Biotechnol. 2019 Jul;103(14):5831-5841. doi: 10.1007/s00253-019-09883-z. Epub 2019 May 21.

PMID:
31115628
2.

Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover.

Wang F, Kertesz MA, Feng G.

Mycorrhiza. 2019 Jul;29(4):351-362. doi: 10.1007/s00572-019-00896-0. Epub 2019 May 1.

PMID:
31044298
3.

Bacterial population dynamics in recycled mushroom compost leachate.

Safianowicz K, Bell TL, Kertesz MA.

Appl Microbiol Biotechnol. 2018 Jun;102(12):5335-5342. doi: 10.1007/s00253-018-9007-4. Epub 2018 Apr 25.

PMID:
29696332
4.

Author Correction: Seasonal total methane depletion in limestone caves.

Waring CL, Hankin SI, Griffith DWT, Kertesz MA, Kobylski V, Wilson NL, Coleman NV, Kettlewell G, Zlot R, Bosse M, Bell G.

Sci Rep. 2018 Apr 11;8(1):6059. doi: 10.1038/s41598-018-23872-8.

5.

Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms.

Kertesz MA, Thai M.

Appl Microbiol Biotechnol. 2018 Feb;102(4):1639-1650. doi: 10.1007/s00253-018-8777-z. Epub 2018 Jan 23. Review.

PMID:
29362825
6.

Seasonal total methane depletion in limestone caves.

Waring CL, Hankin SI, Griffith DWT, Kertesz MA, Kobylski V, Wilson NL, Coleman NV, Kettlewell G, Zlot R, Bosse M, Bell G.

Sci Rep. 2017 Aug 16;7(1):8314. doi: 10.1038/s41598-017-07769-6. Erratum in: Sci Rep. 2018 Apr 11;8(1):6059.

7.

Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors.

Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK.

FEMS Microbiol Ecol. 2017 Jan;93(1). pii: fiw212. Epub 2016 Oct 12.

PMID:
27737901
8.

phoD Alkaline Phosphatase Gene Diversity in Soil.

Ragot SA, Kertesz MA, Bünemann EK.

Appl Environ Microbiol. 2015 Oct;81(20):7281-9. doi: 10.1128/AEM.01823-15. Epub 2015 Aug 7.

9.

Desulfurization of mucin by Pseudomonas aeruginosa: influence of sulfate in the lungs of cystic fibrosis patients.

Robinson CV, Elkins MR, Bialkowski KM, Thornton DJ, Kertesz MA.

J Med Microbiol. 2012 Dec;61(Pt 12):1644-53. doi: 10.1099/jmm.0.047167-0. Epub 2012 Aug 23.

PMID:
22918866
10.

Identification of plant quantitative trait loci modulating a rhizobacteria-aphid indirect effect.

Tétard-Jones C, Kertesz MA, Preziosi RF.

PLoS One. 2012;7(7):e41524. doi: 10.1371/journal.pone.0041524. Epub 2012 Jul 26.

11.

Quantitative trait loci mapping of phenotypic plasticity and genotype-environment interactions in plant and insect performance.

Tétard-Jones C, Kertesz MA, Preziosi RF.

Philos Trans R Soc Lond B Biol Sci. 2011 May 12;366(1569):1368-79. doi: 10.1098/rstb.2010.0356.

12.

Community genetic interactions mediate indirect ecological effects between a parasitoid wasp and rhizobacteria.

Zytynska SE, Fleming S, Tétard-Jones C, Kertesz MA, Preziosi RF.

Ecology. 2010 Jun;91(6):1563-8.

PMID:
20583697
13.

Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold.

Monferrer D, Tralau T, Kertesz MA, Dix I, Solà M, Usón I.

Mol Microbiol. 2010 Mar;75(5):1199-214. doi: 10.1111/j.1365-2958.2010.07043.x. Epub 2010 Jan 5.

14.

Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities.

Schmalenberger A, Hodge S, Hawkesford MJ, Kertesz MA.

FEMS Microbiol Ecol. 2009 Jan;67(1):140-50. doi: 10.1111/j.1574-6941.2008.00602.x.

15.

High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 and data-set analysis for a MIRAS structure-solution approach.

Monferrer D, Tralau T, Kertesz MA, Panjikar S, Usón I.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Aug 1;64(Pt 8):764-9. doi: 10.1107/S1744309108019738. Epub 2008 Jul 31.

16.

The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes.

Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK, Kertesz MA.

Environ Microbiol. 2008 Jun;10(6):1486-500. doi: 10.1111/j.1462-2920.2007.01564.x. Epub 2008 Feb 15.

PMID:
18279342
17.

Genotype-by-genotype interactions modified by a third species in a plant-insect system.

Tétard-Jones C, Kertesz MA, Gallois P, Preziosi RF.

Am Nat. 2007 Sep;170(3):492-9. Epub 2007 Jul 20.

PMID:
17879200
18.

Rhizobacteria and plant sulfur supply.

Kertesz MA, Fellows E, Schmalenberger A.

Adv Appl Microbiol. 2007;62:235-68. Review. No abstract available.

PMID:
17869607
19.

Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa.

Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA, Kertesz MA.

J Bacteriol. 2007 Oct;189(19):6743-50. Epub 2007 Aug 3.

20.

Desulfurization of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene.

Schmalenberger A, Kertesz MA.

Environ Microbiol. 2007 Feb;9(2):535-45.

PMID:
17222151
22.

Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons.

Cunliffe M, Kertesz MA.

Appl Microbiol Biotechnol. 2006 Oct;72(5):1083-9. Epub 2006 Mar 28.

PMID:
16568318
24.

Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere.

Mirleau P, Wogelius R, Smith A, Kertesz MA.

Appl Environ Microbiol. 2005 Nov;71(11):6571-7.

25.

The role of soil microbes in plant sulphur nutrition.

Kertesz MA, Mirleau P.

J Exp Bot. 2004 Aug;55(404):1939-45. Epub 2004 Jun 4. Review.

PMID:
15181108
26.

The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida.

Kahnert A, Mirleau P, Wait R, Kertesz MA.

Environ Microbiol. 2002 Apr;4(4):225-37.

PMID:
12010129
27.

Desulfurization and desulfonation: applications of sulfur-controlled gene expression in bacteria.

Kertesz MA, Wietek C.

Appl Microbiol Biotechnol. 2001 Nov;57(4):460-6. Review.

PMID:
11762590
28.

1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.

Boltes I, Czapinska H, Kahnert A, von Bülow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Usón I.

Structure. 2001 Jun;9(6):483-91.

29.

Bacterial transporters for sulfate and organosulfur compounds.

Kertesz MA.

Res Microbiol. 2001 Apr-May;152(3-4):279-90. Review.

PMID:
11421275
30.
31.

The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.

Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA.

J Bacteriol. 2000 May;182(10):2869-78.

32.
33.

The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon.

Hummerjohann J, Laudenbach S, Rétey J, Leisinger T, Kertesz MA.

J Bacteriol. 2000 Apr;182(7):2055-8.

35.

Pathways of assimilative sulfur metabolism in Pseudomonas putida.

Vermeij P, Kertesz MA.

J Bacteriol. 1999 Sep;181(18):5833-7.

36.

Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313.

Vermeij P, Wietek C, Kahnert A, Wüest T, Kertesz MA.

Mol Microbiol. 1999 Jun;32(5):913-26.

39.

Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K.

J Biol Chem. 1998 Oct 2;273(40):25560-4.

40.

Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates.

Hummerjohann J, Küttel E, Quadroni M, Ragaller J, Leisinger T, Kertesz MA.

Microbiology. 1998 May;144 ( Pt 5):1375-86.

PMID:
9611812
41.

Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli.

van der Ploeg JR, Iwanicka-Nowicka R, Kertesz MA, Leisinger T, Hryniewicz MM.

J Bacteriol. 1997 Dec;179(24):7671-8.

42.

Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli.

Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T.

J Biol Chem. 1997 Sep 12;272(37):23031-6.

43.

Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.

van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T.

J Bacteriol. 1996 Sep;178(18):5438-46.

44.
45.

Anaerobic Desulfonation of 4-Tolylsulfonate and 2-(4-Sulfophenyl) Butyrate by a Clostridium sp.

Denger K, Kertesz MA, Vock EH, Schon R, Magli A, Cook AM.

Appl Environ Microbiol. 1996 May;62(5):1526-30.

46.

Desulfonation of aliphatic sulfonates by Pseudomonas aeruginosa PAO.

Kertesz MA.

FEMS Microbiol Lett. 1996 Apr 1;137(2-3):221-5.

PMID:
8998989
47.
48.

Microbial metabolism of sulfur- and phosphorus-containing xenobiotics.

Kertesz MA, Cook AM, Leisinger T.

FEMS Microbiol Rev. 1994 Oct;15(2-3):195-215. Review.

PMID:
7946467
49.

Desulfonation of linear alkylbenzenesulfonate surfactants and related compounds by bacteria.

Kertesz MA, Kölbener P, Stockinger H, Beil S, Cook AM.

Appl Environ Microbiol. 1994 Jul;60(7):2296-303.

50.

Supplemental Content

Loading ...
Support Center