Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 182

1.

Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy.

Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS.

Diabetologia. 2019 Dec;62(12):2365-2374. doi: 10.1007/s00125-019-04998-4. Epub 2019 Oct 14.

PMID:
31612267
2.

Dyslipidemia in retinal metabolic disorders.

Fu Z, Chen CT, Cagnone G, Heckel E, Sun Y, Cakir B, Tomita Y, Huang S, Li Q, Britton W, Cho SS, Kern TS, Hellström A, Joyal JS, Smith LE.

EMBO Mol Med. 2019 Oct;11(10):e10473. doi: 10.15252/emmm.201910473. Epub 2019 Sep 5. Review.

3.

Pathophysiology of Diabetic Retinopathy: Contribution and Limitations of Laboratory Research.

Kern TS, Antonetti DA, Smith LEH.

Ophthalmic Res. 2019;62(4):196-202. doi: 10.1159/000500026. Epub 2019 Jul 30. Review.

4.

Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy.

Yokomizo H, Maeda Y, Park K, Clermont AC, Hernandez SL, Fickweiler W, Li Q, Wang CH, Paniagua SM, Simao F, Ishikado A, Sun B, Wu IH, Katagiri S, Pober DM, Tinsley LJ, Avery RL, Feener EP, Kern TS, Keenan HA, Aiello LP, Sun JK, King GL.

Sci Transl Med. 2019 Jul 3;11(499). pii: eaau6627. doi: 10.1126/scitranslmed.aau6627.

PMID:
31270273
5.

Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration.

Lindstrom SI, Sigurdardottir S, Zapadka TE, Tang J, Liu H, Taylor BE, Smith DG, Lee CA, DeAngelis J, Kern TS, Taylor PR.

J Diabetes Complications. 2019 Sep;33(9):668-674. doi: 10.1016/j.jdiacomp.2019.05.016. Epub 2019 May 29.

PMID:
31239234
6.

Diabetes-mediated IL-17A enhances retinal inflammation, oxidative stress, and vascular permeability.

Sigurdardottir S, Zapadka TE, Lindstrom SI, Liu H, Taylor BE, Lee CA, Kern TS, Taylor PR.

Cell Immunol. 2019 Jul;341:103921. doi: 10.1016/j.cellimm.2019.04.009. Epub 2019 May 2.

PMID:
31076079
7.

Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy.

Liu H, Tang J, Du Y, Saadane A, Samuels I, Veenstra A, Kiser JZ, Palczewski K, Kern TS.

Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1538-1546. doi: 10.1167/iovs.18-26433.

8.

Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium.

Palczewska G, Kern TS, Palczewski K.

Methods Mol Biol. 2019;1834:333-343. doi: 10.1007/978-1-4939-8669-9_21.

PMID:
30324453
9.

Two-photon imaging of the mammalian retina with ultrafast pulsing laser.

Palczewska G, Stremplewski P, Suh S, Alexander N, Salom D, Dong Z, Ruminski D, Choi EH, Sears AE, Kern TS, Wojtkowski M, Palczewski K.

JCI Insight. 2018 Sep 6;3(17). pii: 121555. doi: 10.1172/jci.insight.121555. eCollection 2018 Sep 6.

10.

D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo.

Berkowitz BA, Podolsky RH, Farrell B, Lee H, Trepanier C, Berri AM, Dernay K, Graffice E, Shafie-Khorassani F, Kern TS, Roberts R.

Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):2999-3010. doi: 10.1167/iovs.18-23829.

11.

The Absence of Indoleamine 2,3-Dioxygenase Inhibits Retinal Capillary Degeneration in Diabetic Mice.

Nahomi RB, Sampathkumar S, Myers AM, Elghazi L, Smith DG, Tang J, Lee CA, Kern TS, Nagaraj RH, Fort PE.

Invest Ophthalmol Vis Sci. 2018 Apr 1;59(5):2042-2053. doi: 10.1167/iovs.17-22702.

12.

Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy.

Cheng Y, Du Y, Liu H, Tang J, Veenstra A, Kern TS.

Diabetes. 2018 Feb;67(2):291-298. doi: 10.2337/db17-0803. Epub 2017 Nov 22.

13.

A Combination of G Protein-Coupled Receptor Modulators Protects Photoreceptors from Degeneration.

Orban T, Leinonen H, Getter T, Dong Z, Sun W, Gao S, Veenstra A, Heidari-Torkabadi H, Kern TS, Kiser PD, Palczewski K.

J Pharmacol Exp Ther. 2018 Feb;364(2):207-220. doi: 10.1124/jpet.117.245167. Epub 2017 Nov 21.

14.

IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs.

Zhou H, Bulek K, Li X, Herjan T, Yu M, Qian W, Wang H, Zhou G, Chen X, Yang H, Hong L, Zhao J, Qin L, Fukuda K, Flotho A, Gao J, Dongre A, Carman JA, Kang Z, Su B, Kern TS, Smith JD, Hamilton TA, Melchior F, Fox PL, Li X.

Elife. 2017 Oct 9;6. pii: e29630. doi: 10.7554/eLife.29630.

15.

Loss of CD40 attenuates experimental diabetes-induced retinal inflammation but does not protect mice from electroretinogram defects.

Samuels IS, Portillo JC, Miao Y, Kern TS, Subauste CS.

Vis Neurosci. 2017 Jan;34:E009. doi: 10.1017/S0952523817000074.

PMID:
28965505
16.

DAF in diabetic patients is subject to glycation/inactivation at its active site residues.

Flückiger R, Cocuzzi E, Nagaraj RH, Shoham M, Kern TS, Medof ME.

Mol Immunol. 2018 Jan;93:246-252. doi: 10.1016/j.molimm.2017.06.036. Epub 2017 Sep 5.

17.

Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes.

Tonade D, Liu H, Palczewski K, Kern TS.

Diabetologia. 2017 Oct;60(10):2111-2120. doi: 10.1007/s00125-017-4381-5. Epub 2017 Jul 28.

18.

Diabetes of 5 years duration does not lead to photoreceptor degeneration in the canine non-tapetal inferior-nasal retina.

Tonade D, Kern TS.

Exp Eye Res. 2017 Sep;162:126-128. doi: 10.1016/j.exer.2017.07.009. Epub 2017 Jul 19. No abstract available.

19.

Do photoreceptor cells cause the development of retinal vascular disease?

Kern TS.

Vision Res. 2017 Oct;139:65-71. doi: 10.1016/j.visres.2017.03.011. Epub 2017 May 8. Review.

20.

Ligation of CD40 in Human Müller Cells Induces P2X7 Receptor-Dependent Death of Retinal Endothelial Cells.

Portillo JC, Lopez Corcino Y, Dubyak GR, Kern TS, Matsuyama S, Subauste CS.

Invest Ophthalmol Vis Sci. 2016 Nov 1;57(14):6278-6286. doi: 10.1167/iovs.16-20301.

21.

Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy.

Roy S, Kern TS, Song B, Stuebe C.

Am J Pathol. 2017 Jan;187(1):9-19. doi: 10.1016/j.ajpath.2016.08.022. Epub 2016 Nov 12. Review.

22.

Eyes on systems pharmacology.

Chen Y, Kern TS, Kiser PD, Palczewski K.

Pharmacol Res. 2016 Dec;114:39-41. doi: 10.1016/j.phrs.2016.09.026. Epub 2016 Oct 5. No abstract available.

23.

Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes.

Liu H, Tang J, Du Y, Saadane A, Tonade D, Samuels I, Veenstra A, Palczewski K, Kern TS.

Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4272-81. doi: 10.1167/iovs.16-19415.

24.

Photoreceptor Cells Produce Inflammatory Mediators That Contribute to Endothelial Cell Death in Diabetes.

Tonade D, Liu H, Kern TS.

Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4264-71. doi: 10.1167/iovs.16-19859.

25.

Lymphoblastoid Cell Lines as a Tool to Study Inter-Individual Differences in the Response to Glucose.

Grassi MA, Rao VR, Chen S, Cao D, Gao X, Cleary PA, Huang RS, Paterson AD, Natarajan R, Rehman J, Kern TS; DCCT/EDIC Research Group.

PLoS One. 2016 Aug 10;11(8):e0160504. doi: 10.1371/journal.pone.0160504. eCollection 2016.

26.

CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy.

Portillo JC, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern TS, Dubyak GR, Subauste CS.

Diabetes. 2017 Feb;66(2):483-493. doi: 10.2337/db16-0051. Epub 2016 Jul 29.

27.

Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration.

Chen Y, Palczewska G, Masuho I, Gao S, Jin H, Dong Z, Gieser L, Brooks MJ, Kiser PD, Kern TS, Martemyanov KA, Swaroop A, Palczewski K.

Sci Signal. 2016 Jul 26;9(438):ra74. doi: 10.1126/scisignal.aag0245.

28.

Image registration and averaging of low laser power two-photon fluorescence images of mouse retina.

Alexander NS, Palczewska G, Stremplewski P, Wojtkowski M, Kern TS, Palczewski K.

Biomed Opt Express. 2016 Jun 20;7(7):2671-91. doi: 10.1364/BOE.7.002671. eCollection 2016 Jul 1.

29.

Presence of retinal pericyte-reactive autoantibodies in diabetic retinopathy patients.

Zhang L, Li Y, Payne J, Srivastava S, Fan X, Fung J, Li X, Kern TS, Lin F.

Sci Rep. 2016 Feb 3;6:20341. doi: 10.1038/srep20341.

30.

Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice.

Berkowitz BA, Kern TS, Bissig D, Patel P, Bhatia A, Kefalov VJ, Roberts R.

Invest Ophthalmol Vis Sci. 2015 Oct;56(11):6294-303. doi: 10.1167/iovs.15-16990.

31.

Photobiomodulation Mitigates Diabetes-Induced Retinopathy by Direct and Indirect Mechanisms: Evidence from Intervention Studies in Pigmented Mice.

Saliba A, Du Y, Liu H, Patel S, Roberts R, Berkowitz BA, Kern TS.

PLoS One. 2015 Oct 1;10(10):e0139003. doi: 10.1371/journal.pone.0139003. eCollection 2015.

32.

Diabetic Retinopathy: Retina-Specific Methods for Maintenance of Diabetic Rodents and Evaluation of Vascular Histopathology and Molecular Abnormalities.

Veenstra A, Liu H, Lee CA, Du Y, Tang J, Kern TS.

Curr Protoc Mouse Biol. 2015 Sep 1;5(3):247-270. doi: 10.1002/9780470942390.mo140190.

33.

Photoreceptors in diabetic retinopathy.

Kern TS, Berkowitz BA.

J Diabetes Investig. 2015 Jul;6(4):371-80. doi: 10.1111/jdi.12312. Epub 2015 Jan 7. Review.

34.

Retinylamine Benefits Early Diabetic Retinopathy in Mice.

Liu H, Tang J, Du Y, Lee CA, Golczak M, Muthusamy A, Antonetti DA, Veenstra AA, Amengual J, von Lintig J, Palczewski K, Kern TS.

J Biol Chem. 2015 Aug 28;290(35):21568-79. doi: 10.1074/jbc.M115.655555. Epub 2015 Jul 2.

35.

Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability.

Du Y, Cramer M, Lee CA, Tang J, Muthusamy A, Antonetti DA, Jin H, Palczewski K, Kern TS.

FASEB J. 2015 May;29(5):2194-204. doi: 10.1096/fj.14-269431. Epub 2015 Feb 9.

36.

Metanx and early stages of diabetic retinopathy.

Liu H, Tang J, Lee CA, Kern TS.

Invest Ophthalmol Vis Sci. 2015 Jan 8;56(1):647-53. doi: 10.1167/iovs.14-15220.

37.

Proinflammatory responses induced by CD40 in retinal endothelial and Müller cells are inhibited by blocking CD40-Traf2,3 or CD40-Traf6 signaling.

Portillo JA, Schwartz I, Zarini S, Bapputty R, Kern TS, Gubitosi-Klug RA, Murphy RC, Subauste MC, Subauste CS.

Invest Ophthalmol Vis Sci. 2014 Dec 4;55(12):8590-7. doi: 10.1167/iovs.14-15340.

38.

Retinal and nonocular abnormalities in Cyp27a1(-/-)Cyp46a1(-/-) mice with dysfunctional metabolism of cholesterol.

Saadane A, Mast N, Charvet CD, Omarova S, Zheng W, Huang SS, Kern TS, Peachey NS, Pikuleva IA.

Am J Pathol. 2014 Sep;184(9):2403-19. doi: 10.1016/j.ajpath.2014.05.024. Epub 2014 Jul 25.

39.

CD40 promotes the development of early diabetic retinopathy in mice.

Portillo JA, Greene JA, Okenka G, Miao Y, Sheibani N, Kern TS, Subauste CS.

Diabetologia. 2014 Oct;57(10):2222-31.

40.

Interrelationships between the Retinal Neuroglia and Vasculature in Diabetes.

Kern TS.

Diabetes Metab J. 2014 Jun;38(3):163-70. doi: 10.4093/dmj.2014.38.3.163. Review.

41.

Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema.

Tang J, Herda AA, Kern TS.

Br J Ophthalmol. 2014 Aug;98(8):1013-5. doi: 10.1136/bjophthalmol-2013-304477. Epub 2014 Mar 28. Erratum in: Br J Ophthalmol. 2014 Oct;98(10):1463. Dosage error in article text.

42.

Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy.

Rajashekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C, Maturi R, Harris A, Kern TS, March KL.

PLoS One. 2014 Jan 9;9(1):e84671. doi: 10.1371/journal.pone.0084671. eCollection 2014.

43.

Modulation of retinal Müller cells by complement receptor C5aR.

Cheng L, Bu H, Portillo JA, Li Y, Subauste CS, Huang SS, Kern TS, Lin F.

Invest Ophthalmol Vis Sci. 2013 Dec 17;54(13):8191-8. doi: 10.1167/iovs.13-12428.

44.

Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

Veenstra AA, Tang J, Kern TS.

PLoS One. 2013 Oct 21;8(10):e78405. doi: 10.1371/journal.pone.0078405. eCollection 2013.

45.

NRF2 plays a protective role in diabetic retinopathy in mice.

Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, Du Y, Kern TS, Thimmulappa R, Barber AJ, Biswal S, Duh EJ.

Diabetologia. 2014 Jan;57(1):204-13. doi: 10.1007/s00125-013-3093-8. Epub 2013 Nov 3.

46.

Leukocytes from diabetic patients kill retinal endothelial cells: effects of berberine.

Tian P, Ge H, Liu H, Kern TS, Du L, Guan L, Su S, Liu P.

Mol Vis. 2013 Oct 2;19:2092-105. eCollection 2013.

47.

Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina.

Du Y, Veenstra A, Palczewski K, Kern TS.

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16586-91. doi: 10.1073/pnas.1314575110. Epub 2013 Sep 25.

48.

Diabetes-induced impairment in visual function in mice: contributions of p38 MAPK, rage, leukocytes, and aldose reductase.

Lee CA, Li G, Patel MD, Petrash JM, Benetz BA, Veenstra A, Amengual J, von Lintig J, Burant CJ, Tang J, Kern TS.

Invest Ophthalmol Vis Sci. 2014 May 2;55(5):2904-10. doi: 10.1167/iovs.13-11659.

49.

β2-adrenergic receptor knockout mice exhibit A diabetic retinopathy phenotype.

Jiang Y, Zhang Q, Liu L, Tang J, Kern TS, Steinle JJ.

PLoS One. 2013 Jul 24;8(7):e70555. doi: 10.1371/journal.pone.0070555. Print 2013.

50.

MyD88-dependent pathways in leukocytes affect the retina in diabetes.

Tang J, Allen Lee C, Du Y, Sun Y, Pearlman E, Sheibani N, Kern TS.

PLoS One. 2013 Jul 11;8(7):e68871. doi: 10.1371/journal.pone.0068871. Print 2013.

Supplemental Content

Support Center