Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

Nature of the nuclear inclusions formed by PQBP1, a protein linked to neurodegenerative polyglutamine diseases.

Nicolaescu E, Beullens M, Lesage B, Keppens S, Himpens B, Bollen M.

Eur J Cell Biol. 2008 Oct;87(10):817-29. doi: 10.1016/j.ejcb.2008.05.001. Epub 2008 Jul 2.

PMID:
18599155
2.

Interactor-mediated nuclear translocation and retention of protein phosphatase-1.

Lesage B, Beullens M, Nuytten M, Van Eynde A, Keppens S, Himpens B, Bollen M.

J Biol Chem. 2004 Dec 31;279(53):55978-84. Epub 2004 Oct 22.

3.

The nuclear scaffold protein NIPP1 is essential for early embryonic development and cell proliferation.

Van Eynde A, Nuytten M, Dewerchin M, Schoonjans L, Keppens S, Beullens M, Moons L, Carmeliet P, Stalmans W, Bollen M.

Mol Cell Biol. 2004 Jul;24(13):5863-74.

4.

Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1.

Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH, Stalmans W, Bollen M.

J Biol Chem. 2004 Mar 5;279(10):8642-7. Epub 2003 Dec 29.

5.
6.

The somatostatin analogue TT-232 induces apoptosis in A431 cells: sustained activation of stress-activated kinases and inhibition of signalling to extracellular signal-regulated kinases.

Vántus T, Kéri G, Krivickiene Z, Valius M, Steták A, Keppens S, Csermely P, Bauer PI, Bökönyi G, Declercq W, Vandenabeele P, Merlevede W, Vandenheede JR.

Cell Signal. 2001 Oct;13(10):717-25.

PMID:
11602182
7.

Nuclear and subnuclear targeting sequences of the protein phosphatase-1 regulator NIPP1.

Jagiello I, Van Eynde A, Vulsteke V, Beullens M, Boudrez A, Keppens S, Stalmans W, Bollen M.

J Cell Sci. 2000 Nov;113 Pt 21:3761-8.

8.

Specific features of glycogen metabolism in the liver.

Bollen M, Keppens S, Stalmans W.

Biochem J. 1998 Nov 15;336 ( Pt 1):19-31. Review.

10.

Modulation of basal hepatic glycogenolysis by nitric oxide.

Borgs M, Bollen M, Keppens S, Yap SH, Stalmans W, Vanstapel F.

Hepatology. 1996 Jun;23(6):1564-71.

PMID:
8675178
11.
12.
13.

Regulation of glycogen phosphorylase activity in isolated human hepatocytes.

Keppens S, Vandekerckhove A, Moshage H, Yap SH, Aerts R, De Wulf H.

Hepatology. 1993 Apr;17(4):610-4.

PMID:
8386694
14.

The complex interaction of ATP and UTP with isolated hepatocytes. How many receptors?

Keppens S.

Gen Pharmacol. 1993 Mar;24(2):283-9. Review.

PMID:
8482512
15.

Characterization of the effects of adenosine 5'-[beta-thio]-diphosphate in rat liver.

Keppens S, Vandekerckhove A, De Wulf H.

Br J Pharmacol. 1993 Mar;108(3):663-8.

16.

Extracellular ATP and UTP exert similar effects on rat isolated hepatocytes.

Keppens S, Vandekerckhove A, De Wulf H.

Br J Pharmacol. 1992 Feb;105(2):475-9.

18.

Lack of glycogenolytical response to vasopressin in guinea-pig liver.

Vandekerckhove A, Keppens S, de Wulf H.

Biochem Soc Trans. 1990 Aug;18(4):688. No abstract available.

PMID:
2276519
19.

Characterization of the purinoceptors present in rabbit and guinea pig liver.

Keppens S, Vandekerckhove A, De Wulf H.

Eur J Pharmacol. 1990 Jun 21;182(1):149-53.

PMID:
2169422
20.

The angiotensin II receptor of rabbit liver: characterization in isolated hepatocytes and effect of GTP.

Vandekerckhove A, Keppens S, De Wulf H.

J Endocrinol. 1989 Oct;123(1):131-6.

PMID:
2809485
21.

Characterization of purinoceptors present on human liver plasma membranes.

Keppens S, Vandekerckhove A, De Wulf H.

FEBS Lett. 1989 May 8;248(1-2):137-40.

22.

Lack of V1 vasopressin receptors in rabbit hepatocytes.

Vandekerckhove A, Miot F, Keppens S, De Wulf H.

Biochem J. 1989 Apr 15;259(2):609-11.

23.

Involvement of a plasma membrane phosphodiesterase in the negative control of cyclic AMP levels by vasopressin in rat hepatocytes.

Miot F, Keppens S, Erneux C, Wells JN, De Wulf H.

Biochem Pharmacol. 1988 Sep 15;37(18):3447-53.

PMID:
2844189
25.
26.
27.

P2-purinergic control of liver glycogenolysis.

Keppens S, De Wulf H.

Biochem J. 1985 Nov 1;231(3):797-99.

28.

Vasopressin and angiotensin control the activity of liver phosphodiesterase.

Keppens S, De Wulf H.

Biochem J. 1984 Aug 15;222(1):277-80.

29.

The liver angiotensin receptor involved in the activation of glycogen phosphorylase.

Keppens S, De Wulf H, Clauser P, Jard S, Morgat JL.

Biochem J. 1982 Dec 15;208(3):809-17.

31.

Pattern of protein phosphorylation in rat hepatocytes stimulated by glucagon or by the Ca2+-linked hormones.

Lamy F, Lecocq R, Dumont JE, Keppens S, De Wulf H.

Eur J Biochem. 1982 Sep;127(1):193-7.

32.
33.
34.

The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis.

Keppens S, de Wulf H.

Biochim Biophys Acta. 1979 Nov 15;588(1):63-9.

PMID:
227475
35.

On the nature of the vasopressin receptors in liver [proceedings].

Keppens S, De Wulf H.

Arch Int Physiol Biochim. 1979 Feb;87(1):189-90. No abstract available.

PMID:
92265
36.

Inactivation and reactivation of liver phosphorylase b kinase.

Vandenheede JR, Keppens S, De Wulf H.

Biochim Biophys Acta. 1977 Apr 12;481(2):463-70.

PMID:
15609
37.

On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase.

Keppens S, Vandenheede JR, De Wulf H.

Biochim Biophys Acta. 1977 Feb 28;496(2):448-57.

PMID:
189844
38.

Rat liver phosphorylase b kinase: interconvertible forms [proceedings].

Vandenheede JR, Keppens S, De Wulf H.

Arch Int Physiol Biochim. 1977 Feb;85(1):201-3. No abstract available.

PMID:
68751
39.

The cyclic AMP independent regulation of liver glycogenolysis.

Keppens S.

Verh K Acad Geneeskd Belg. 1977;39(4):202-24. No abstract available.

PMID:
204122
40.

Calcium is a second messenger in liver for the hormonally-initiated glycogenolysis.

Keppens S, Vandenheede JR, De Wulf H.

Arch Int Physiol Biochim. 1976 Dec;84(5):1082-4. No abstract available.

PMID:
66004
41.

The activation of liver glycogen phosphorylase by angiotensin II.

Keppens S, De Wulf H.

FEBS Lett. 1976 Oct 1;68(2):279-82. No abstract available.

42.

Proceedings: Angiotensin exerts a direct glycogenolytic action on the liver.

Keppens S, De Wulf H.

Arch Int Physiol Biochim. 1976 Feb;84(1):167-9. No abstract available.

PMID:
60943
43.

Proceedings: Is calcium the second messenger in liver for cyclic AMP-independent glycogenolytic hormones?

De Wulf H, Keppens S.

Arch Int Physiol Biochim. 1976 Feb;84(1):159-60. No abstract available.

PMID:
60937
44.

The activation of liver phosphorylase b kinase by glucagon.

Vandenheede JR, Keppens S, De Wulf H.

FEBS Lett. 1976 Jan 15;61(2):213-7. No abstract available.

45.

Ionic requirements for the inhibition of liver glycogen synthetase phosphatase by phosphorylase a.

Vandereycken G, Keppens S, De Wulf H.

Arch Int Physiol Biochim. 1975 Dec;83(5):1013-4. No abstract available.

PMID:
58595
46.

Proceedings: Activation of liver glycogen phosphorylase by angiotensin II.

Keppens S, De Wulf H.

Arch Int Physiol Biochim. 1975 May;83(2):375-6. No abstract available.

PMID:
54094
47.

The activation of liver glycogen phosphorylase by vasopressin.

Keppens S, de Wulf H.

FEBS Lett. 1975 Mar 1;51(1):29-32. No abstract available.

48.

Activation of liver glycogen phosphorylase by vasopressin.

Keppens S, De Wulf H.

Arch Int Physiol Biochim. 1974 Dec;82(5):993-4. No abstract available.

PMID:
4142737
49.

Influence of alloxan-diabetes and insulin on liver protein kinase.

De Wulf H, Keppens S.

Arch Int Physiol Biochim. 1974 Dec;82(5):984-5. No abstract available.

PMID:
4142731
50.

Stabilization of beta-lactoglobulin A in alkaline medium by amphiphilic cations and higher aliphatic alcohols.

Keppens S, Préaux G, Lontie R.

Arch Int Physiol Biochim. 1973 May;81(2):374-5. No abstract available.

PMID:
4126228

Supplemental Content

Loading ...
Support Center