Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.

ATP-binding affinity of the ε subunit of thermophilic F1-ATPase under label-free conditions.

Fujiwara M, Kato-Yamada Y.

Biochem Biophys Rep. 2020 Jan 9;21:100725. doi: 10.1016/j.bbrep.2020.100725. eCollection 2020 Mar.

2.

C-terminal regulatory domain of the ε subunit of Fo F1 ATP synthase enhances the ATP-dependent H+ pumping that is involved in the maintenance of cellular membrane potential in Bacillus subtilis.

Akanuma G, Tagana T, Sawada M, Suzuki S, Shimada T, Tanaka K, Kawamura F, Kato-Yamada Y.

Microbiologyopen. 2019 Aug;8(8):e00815. doi: 10.1002/mbo3.815. Epub 2019 Feb 27.

3.

Magnesium Suppresses Defects in the Formation of 70S Ribosomes as Well as in Sporulation Caused by Lack of Several Individual Ribosomal Proteins.

Akanuma G, Yamazaki K, Yagishi Y, Iizuka Y, Ishizuka M, Kawamura F, Kato-Yamada Y.

J Bacteriol. 2018 Aug 24;200(18). pii: e00212-18. doi: 10.1128/JB.00212-18. Print 2018 Sep 15.

4.

Mechanistic Insights into the Activation of Soluble Guanylate Cyclase by Carbon Monoxide: A Multistep Mechanism Proposed for the BAY 41-2272 Induced Formation of 5-Coordinate CO-Heme.

Makino R, Obata Y, Tsubaki M, Iizuka T, Hamajima Y, Kato-Yamada Y, Mashima K, Shiro Y.

Biochemistry. 2018 Mar 13;57(10):1620-1631. doi: 10.1021/acs.biochem.7b01240. Epub 2018 Feb 20.

PMID:
29461815
5.

Essential Role of the ε Subunit for Reversible Chemo-Mechanical Coupling in F1-ATPase.

Watanabe R, Genda M, Kato-Yamada Y, Noji H.

Biophys J. 2018 Jan 9;114(1):178-187. doi: 10.1016/j.bpj.2017.11.004.

6.

The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase.

Krah A, Kato-Yamada Y, Takada S.

PLoS One. 2017 May 18;12(5):e0177907. doi: 10.1371/journal.pone.0177907. eCollection 2017.

7.

Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution.

Hamajima Y, Nagae T, Watanabe N, Ohmae E, Kato-Yamada Y, Kato C.

Extremophiles. 2016 Mar;20(2):177-86. doi: 10.1007/s00792-016-0811-4. Epub 2016 Feb 5.

PMID:
26847201
8.

High affinity nucleotide-binding mutant of the ε subunit of thermophilic F1-ATPase.

Kato-Yamada Y.

Biochem Biophys Res Commun. 2016 Jan 22;469(4):1129-32. doi: 10.1016/j.bbrc.2015.12.121. Epub 2015 Dec 30.

PMID:
26746006
9.

Ribosome dimerization is essential for the efficient regrowth of Bacillus subtilis.

Akanuma G, Kazo Y, Tagami K, Hiraoka H, Yano K, Suzuki S, Hanai R, Nanamiya H, Kato-Yamada Y, Kawamura F.

Microbiology. 2016 Mar;162(3):448-458. doi: 10.1099/mic.0.000234. Epub 2016 Jan 7.

PMID:
26743942
10.

Severe MgADP inhibition of Bacillus subtilis F1-ATPase is not due to the absence of nucleotide binding to the noncatalytic nucleotide binding sites.

Ishikawa T, Kato-Yamada Y.

PLoS One. 2014 Sep 22;9(9):e107197. doi: 10.1371/journal.pone.0107197. eCollection 2014.

11.

Pressure effects on the chimeric 3-isopropylmalate dehydrogenases of the deep-sea piezophilic Shewanella benthica and the atmospheric pressure-adapted Shewanella oneidensis.

Hamajima Y, Nagae T, Watanabe N, Kato-Yamada Y, Imai T, Kato C.

Biosci Biotechnol Biochem. 2014;78(3):469-71. doi: 10.1080/09168451.2014.890033. Epub 2014 Apr 29.

PMID:
25036836
12.

ε subunit of Bacillus subtilis F1-ATPase relieves MgADP inhibition.

Mizumoto J, Kikuchi Y, Nakanishi YH, Mouri N, Cai A, Ohta T, Haruyama T, Kato-Yamada Y.

PLoS One. 2013 Aug 13;8(8):e73888. doi: 10.1371/journal.pone.0073888. eCollection 2013.

13.

ATP binding to the ϵ subunit of thermophilic ATP synthase is crucial for efficient coupling of ATPase and H+ pump activities.

Kadoya F, Kato S, Watanabe K, Kato-Yamada Y.

Biochem J. 2011 Jul 1;437(1):135-40. doi: 10.1042/BJ20110443.

PMID:
21510843
14.

Inhibition of thermophilic F1-ATPase by the ε subunit takes different path from the ADP-Mg inhibition.

Haruyama T, Hirono-Hara Y, Kato-Yamada Y.

Biophysics (Nagoya-shi). 2010 Dec 17;6:59-65. eCollection 2010.

15.

Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3.

Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T.

Biophys J. 2010 Feb 3;98(3):434-42. doi: 10.1016/j.bpj.2009.10.023.

16.

[On the regulatory role of the epsilon subunit in ATP synthase].

Kato-Yamada Y.

Seikagaku. 2009 Nov;81(11):943-51. Review. Japanese. No abstract available.

PMID:
19999576
17.

Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis.

Yasuno T, Muneyuki E, Yoshida M, Kato-Yamada Y.

Biochem Biophys Res Commun. 2009 Dec 11;390(2):230-4. doi: 10.1016/j.bbrc.2009.09.092. Epub 2009 Sep 26.

PMID:
19785990
18.

Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.

Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H.

Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15651-6. doi: 10.1073/pnas.0904764106. Epub 2009 Aug 31.

19.

Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP.

Kato S, Yoshida M, Kato-Yamada Y.

J Biol Chem. 2007 Dec 28;282(52):37618-23. Epub 2007 Oct 12.

20.

Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1.

Yagi H, Kajiwara N, Tanaka H, Tsukihara T, Kato-Yamada Y, Yoshida M, Akutsu H.

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11233-8. Epub 2007 Jun 20.

21.

gammaepsilon Sub-complex of thermophilic ATP synthase has the ability to bind ATP.

Iizuka S, Kato S, Yoshida M, Kato-Yamada Y.

Biochem Biophys Res Commun. 2006 Nov 3;349(4):1368-71. Epub 2006 Sep 11.

PMID:
16982032
22.

Isolated epsilon subunit of Bacillus subtilis F1-ATPase binds ATP.

Kato-Yamada Y.

FEBS Lett. 2005 Dec 19;579(30):6875-8. Epub 2005 Dec 1.

23.

Real-time monitoring of conformational dynamics of the epsilon subunit in F1-ATPase.

Iino R, Murakami T, Iizuka S, Kato-Yamada Y, Suzuki T, Yoshida M.

J Biol Chem. 2005 Dec 2;280(48):40130-4. Epub 2005 Oct 3.

24.

Highly coupled ATP synthesis by F1-ATPase single molecules.

Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H.

Nature. 2005 Feb 17;433(7027):773-7.

PMID:
15716957
25.

Planar lipid bilayer reconstitution with a micro-fluidic system.

Suzuki H, Tabata K, Kato-Yamada Y, Noji H, Takeuchi S.

Lab Chip. 2004 Oct;4(5):502-5. Epub 2004 Sep 2.

PMID:
15472735
26.

Isolated epsilon subunit of thermophilic F1-ATPase binds ATP.

Kato-Yamada Y, Yoshida M.

J Biol Chem. 2003 Sep 19;278(38):36013-6. Epub 2003 Jul 1.

27.

The role of the betaDELSEED motif of F1-ATPase: propagation of the inhibitory effect of the epsilon subunit.

Hara KY, Kato-Yamada Y, Kikuchi Y, Hisabori T, Yoshida M.

J Biol Chem. 2001 Jun 29;276(26):23969-73. Epub 2001 Mar 28.

28.

Movement of the helical domain of the epsilon subunit is required for the activation of thermophilic F1-ATPase.

Kato-Yamada Y, Yoshida M, Hisabori T.

J Biol Chem. 2000 Nov 17;275(46):35746-50.

29.

Epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, also inhibits F(0)F(1)-ATPase.

Kato-Yamada Y, Bald D, Koike M, Motohashi K, Hisabori T, Yoshida M.

J Biol Chem. 1999 Nov 26;274(48):33991-4.

30.

Direct observation of the rotation of epsilon subunit in F1-ATPase.

Kato-Yamada Y, Noji H, Yasuda R, Kinosita K Jr, Yoshida M.

J Biol Chem. 1998 Jul 31;273(31):19375-7.

Supplemental Content

Loading ...
Support Center