Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60


Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression.

Nakamae I, Morimoto T, Shima H, Shionyu M, Fujiki H, Yoneda-Kato N, Yokoyama T, Kanaya S, Kakiuchi K, Shirai T, Meiyanto E, Kato JY.

Molecules. 2019 Nov 10;24(22). pii: E4067. doi: 10.3390/molecules24224067.


Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence.

Lestari B, Nakamae I, Yoneda-Kato N, Morimoto T, Kanaya S, Yokoyama T, Shionyu M, Shirai T, Meiyanto E, Kato JY.

Sci Rep. 2019 Oct 16;9(1):14867. doi: 10.1038/s41598-019-51244-3.


Cell Cycle Modulation of CHO-K1 Cells Under Genistein Treatment Correlates with Cells Senescence, Apoptosis and ROS Level but in a Dose-Dependent Manner.

Jenie RI, Amalina ND, Ilmawati GPN, Utomo RY, Ikawati M, Khumaira A, Kato JY, Meiyanto E.

Adv Pharm Bull. 2019 Aug;9(3):453-461. doi: 10.15171/apb.2019.054. Epub 2019 Aug 1.


Anti-proliferative and Anti-metastatic Potential of Curcumin Analogue, Pentagamavunon-1 (PGV-1), Toward Highly Metastatic Breast Cancer Cells in Correlation with ROS Generation.

Meiyanto E, Putri H, Arum Larasati Y, Yudi Utomo R, Istighfari Jenie R, Ikawati M, Lestari B, Yoneda-Kato N, Nakamae I, Kawaichi M, Kato JY.

Adv Pharm Bull. 2019 Aug;9(3):445-452. doi: 10.15171/apb.2019.053. Epub 2019 Aug 1.


Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth.

Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY.

Sci Rep. 2018 Feb 1;8(1):2039. doi: 10.1038/s41598-018-20179-6.


Myeloid leukemia factor 1 stabilizes tumor suppressor C/EBPα to prevent Trib1-driven acute myeloid leukemia.

Nakamae I, Kato JY, Yokoyama T, Ito H, Yoneda-Kato N.

Blood Adv. 2017 Sep 1;1(20):1682-1693. doi: 10.1182/bloodadvances.2017007054. eCollection 2017 Sep 12.


Discovery of non-competitive thrombin inhibitor derived from competitive tryptase inhibitor skeleton: Shift in molecular recognition resulted from skeletal conversion of carboxylate into phosphonate.

Aoyama H, Ijuin R, Kato JY, Urushiyama S, Tetsuhashi M, Hashimoto Y, Yokomatsu T.

Bioorg Med Chem Lett. 2015 Sep 1;25(17):3676-80. doi: 10.1016/j.bmcl.2015.06.039. Epub 2015 Jun 17.


Design and synthesis of 5-[(2-chloro-6-fluorophenyl)acetylamino]-3-(4-fluorophenyl)-4-(4-pyrimidinyl)isoxazole (AKP-001), a novel inhibitor of p38 MAP kinase with reduced side effects based on the antedrug concept.

Hasumi K, Sato S, Saito T, Kato JY, Shirota K, Sato J, Suzuki H, Ohta S.

Bioorg Med Chem. 2014 Aug 1;22(15):4162-76. doi: 10.1016/j.bmc.2014.05.045. Epub 2014 Jun 3.


COP1 targets C/EBPα for degradation and induces acute myeloid leukemia via Trib1.

Yoshida A, Kato JY, Nakamae I, Yoneda-Kato N.

Blood. 2013 Sep 5;122(10):1750-60. doi: 10.1182/blood-2012-12-476101. Epub 2013 Jul 24.


Novel strategy for synthesis of substituted benzimidazo[1,2-a]quinolines.

Kato JY, Ito Y, Ijuin R, Aoyama H, Yokomatsu T.

Org Lett. 2013 Jul 19;15(14):3794-7. doi: 10.1021/ol4017723. Epub 2013 Jul 10.


CSN5 specifically interacts with CDK2 and controls senescence in a cytoplasmic cyclin E-mediated manner.

Yoshida A, Yoneda-Kato N, Kato JY.

Sci Rep. 2013;3:1054. doi: 10.1038/srep01054. Epub 2013 Jan 11.


Development of a new cascade reaction for convergent synthesis of pyrazolo[1,5-a]quinoline derivatives under transition-metal-free conditions.

Kato JY, Aoyama H, Yokomatsu T.

Org Biomol Chem. 2013 Feb 21;11(7):1171-8. doi: 10.1039/c2ob27050a.


The COP1 E3-ligase interacts with FIP200, a key regulator of mammalian autophagy.

Kobayashi S, Yoneda-Kato N, Itahara N, Yoshida A, Kato JY.

BMC Biochem. 2013 Jan 6;14:1. doi: 10.1186/1471-2091-14-1.


Depletion of CSN5 inhibits Ras-mediated tumorigenesis by inducing premature senescence in p53-null cells.

Tsujimoto I, Yoshida A, Yoneda-Kato N, Kato JY.

FEBS Lett. 2012 Dec 14;586(24):4326-31. doi: 10.1016/j.febslet.2012.10.042. Epub 2012 Nov 2.


New twist in the regulation of cyclin D1.

Kato JY, Yoneda-Kato N.

Biomol Concepts. 2010 Dec 1;1(5-6):403-9. doi: 10.1515/bmc.2010.029.


CSN5/Jab1 controls multiple events in the mammalian cell cycle.

Yoshida A, Yoneda-Kato N, Panattoni M, Pardi R, Kato JY.

FEBS Lett. 2010 Nov 19;584(22):4545-52. doi: 10.1016/j.febslet.2010.10.039. Epub 2010 Oct 26.


Mammalian COP9 signalosome.

Kato JY, Yoneda-Kato N.

Genes Cells. 2009 Nov;14(11):1209-25. doi: 10.1111/j.1365-2443.2009.01349.x. Epub 2009 Oct 22. Review.


Isolation and characterization of cytoplasmic cyclin D1 mutants.

Murakami H, Horihata M, Andojo S, Yoneda-Kato N, Kato JY.

FEBS Lett. 2009 May 19;583(10):1575-80. doi: 10.1016/j.febslet.2009.04.036. Epub 2009 May 3.


Stable form of JAB1 enhances proliferation and maintenance of hematopoietic progenitors.

Mori M, Yoneda-Kato N, Yoshida A, Kato JY.

J Biol Chem. 2008 Oct 24;283(43):29011-21. doi: 10.1074/jbc.M804539200. Epub 2008 Jul 30.


Small mitochondrial ARF (smARF) is located in both the nucleus and cytoplasm, induces cell death, and activates p53 in mouse fibroblasts.

Ueda Y, Koya T, Yoneda-Kato N, Kato JY.

FEBS Lett. 2008 Apr 30;582(10):1459-64. doi: 10.1016/j.febslet.2008.03.032. Epub 2008 Mar 31.


The myeloid leukemia factor interacts with COP9 signalosome subunit 3 in Drosophila melanogaster.

Sugano W, Ohno K, Yoneda-Kato N, Kato JY, Yamaguchi M.

FEBS J. 2008 Feb;275(3):588-600. doi: 10.1111/j.1742-4658.2007.06229.x.


Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces.

Kato JY, Funa N, Watanabe H, Ohnishi Y, Horinouchi S.

Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2378-83. Epub 2007 Feb 2.


Preparation and characterization of monoclonal antibodies against mouse Jab1/CSN5 protein.

Kato JY, Nakamae I, Tomoda K, Fukumoto A, Yoneda-Kato N.

Hybridoma (Larchmt). 2006 Dec;25(6):342-8.


Depletion of Jab1 inhibits proliferation of pancreatic cancer cell lines.

Fukumoto A, Tomoda K, Yoneda-Kato N, Nakajima Y, Kato JY.

FEBS Lett. 2006 Oct 30;580(25):5836-44. Epub 2006 Sep 27.


The Streptomyces subtilisin inhibitor (SSI) gene in Streptomyces coelicolor A3(2).

Kato JY, Hirano S, Ohnishi Y, Horinouchi S.

Biosci Biotechnol Biochem. 2005 Aug;69(8):1624-9.


Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3.

Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY.

EMBO J. 2005 May 4;24(9):1739-49. Epub 2005 Apr 21.


Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation.

Fukumoto A, Tomoda K, Kubota M, Kato JY, Yoneda-Kato N.

FEBS Lett. 2005 Feb 14;579(5):1047-54. Epub 2005 Jan 13.


Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus.

Kato JY, Chi WJ, Ohnishi Y, Hong SK, Horinouchi S.

J Bacteriol. 2005 Jan;187(1):286-95.


Immunohistochemical study of Skp2 and Jab1, two key molecules in the degradation of P27, in lung adenocarcinoma.

Goto A, Niki T, Moriyama S, Funata N, Moriyama H, Nishimura Y, Tsuchida R, Kato JY, Fukayama M.

Pathol Int. 2004 Sep;54(9):675-81.


The Jab1/COP9 signalosome subcomplex is a downstream mediator of Bcr-Abl kinase activity and facilitates cell-cycle progression.

Tomoda K, Kato JY, Tatsumi E, Takahashi T, Matsuo Y, Yoneda-Kato N.

Blood. 2005 Jan 15;105(2):775-83. Epub 2004 Sep 7.


Multiple functions of Jab1 are required for early embryonic development and growth potential in mice.

Tomoda K, Yoneda-Kato N, Fukumoto A, Yamanaka S, Kato JY.

J Biol Chem. 2004 Oct 8;279(41):43013-8. Epub 2004 Aug 6.


A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus.

Kato JY, Miyahisa I, Mashiko M, Ohnishi Y, Horinouchi S.

J Bacteriol. 2004 Apr;186(7):2206-11.


Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus.

Tanaka T, Ono T, Kitamura N, Kato JY.

Cell Struct Funct. 2003 Dec;28(6):515-22.


Prognostic significance of localized p27Kip1 and potential role of Jab1/CSN5 in pancreatic cancer.

Fukumoto A, Ikeda N, Sho M, Tomoda K, Kanehiro H, Hisanaga M, Tsurui Y, Tsutsumi M, Kato JY, Nakajima Y.

Oncol Rep. 2004 Feb;11(2):277-84.


In vivo analysis of the cyclin D1 promoter during early embryogenesis in Xenopus.

Tanaka T, Kubota M, Shinohara K, Yasuda K, Kato JY.

Cell Struct Funct. 2003 Jun;28(3):165-77.


Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus.

Kato JY, Suzuki A, Yamazaki H, Ohnishi Y, Horinouchi S.

J Bacteriol. 2002 Nov;184(21):6016-25.


Expression of cyclin-dependent kinase inhibitor p27/Kip1 and AP-1 coactivator p38/Jab1 correlates with differentiation of embryonal rhabdomyosarcoma.

Tsuchida R, Miyauchi J, Shen L, Takagi M, Tsunematsu Y, Saeki M, Honna T, Yamada S, Teraoka H, Kato JY, Mizutani S.

Jpn J Cancer Res. 2002 Sep;93(9):1000-6.


The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex.

Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T, Yoshida M, Yoneda-Kato N, Kato JY.

J Biol Chem. 2002 Jan 18;277(3):2302-10. Epub 2001 Nov 9.


Cdk2-dependent and -independent pathways in E2F-mediated S phase induction.

Arata Y, Fujita M, Ohtani K, Kijima S, Kato JY.

J Biol Chem. 2000 Mar 3;275(9):6337-45.


Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6.

Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ.

Mol Cell Biol. 1995 May;15(5):2672-81.


Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation.

Kato JY, Matsuoka M, Polyak K, Massagué J, Sherr CJ.

Cell. 1994 Nov 4;79(3):487-96.


Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase.

Matsuoka M, Kato JY, Fisher RP, Morgan DO, Sherr CJ.

Mol Cell Biol. 1994 Nov;14(11):7265-75.


Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase.

Kato JY, Matsuoka M, Strom DK, Sherr CJ.

Mol Cell Biol. 1994 Apr;14(4):2713-21.

Supplemental Content

Support Center