Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus.

Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW.

ISME J. 2017 Sep;11(9):1997-2011. doi: 10.1038/ismej.2017.64. Epub 2017 May 19.

2.

Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus.

Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW.

Science. 2014 Apr 25;344(6182):416-20. doi: 10.1126/science.1248575.

3.

Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria.

Sher D, Thompson JW, Kashtan N, Croal L, Chisholm SW.

ISME J. 2011 Jul;5(7):1125-32. doi: 10.1038/ismej.2011.1. Epub 2011 Feb 17.

4.

Extinctions in heterogeneous environments and the evolution of modularity.

Kashtan N, Parter M, Dekel E, Mayo AE, Alon U.

Evolution. 2009 Aug;63(8):1964-75. doi: 10.1111/j.1558-5646.2009.00684.x. Epub 2009 Mar 10.

5.

An analytically solvable model for rapid evolution of modular structure.

Kashtan N, Mayo AE, Kalisky T, Alon U.

PLoS Comput Biol. 2009 Apr;5(4):e1000355. doi: 10.1371/journal.pcbi.1000355. Epub 2009 Apr 10.

6.

Facilitated variation: how evolution learns from past environments to generalize to new environments.

Parter M, Kashtan N, Alon U.

PLoS Comput Biol. 2008 Nov;4(11):e1000206. doi: 10.1371/journal.pcbi.1000206. Epub 2008 Nov 7.

7.

Environmental variability and modularity of bacterial metabolic networks.

Parter M, Kashtan N, Alon U.

BMC Evol Biol. 2007 Sep 23;7:169.

8.

Varying environments can speed up evolution.

Kashtan N, Noor E, Alon U.

Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13711-6. Epub 2007 Aug 14.

9.

Spontaneous evolution of modularity and network motifs.

Kashtan N, Alon U.

Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13773-8. Epub 2005 Sep 20.

10.

Coarse-graining and self-dissimilarity of complex networks.

Itzkovitz S, Levitt R, Kashtan N, Milo R, Itzkovitz M, Alon U.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016127. Epub 2005 Jan 21.

PMID:
15697678
11.

Topological generalizations of network motifs.

Kashtan N, Itzkovitz S, Milo R, Alon U.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 1):031909. Epub 2004 Sep 23.

PMID:
15524551
12.

Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction.

Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H.

Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5934-9. Epub 2004 Apr 12.

13.

Superfamilies of evolved and designed networks.

Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U.

Science. 2004 Mar 5;303(5663):1538-42.

14.

Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs.

Kashtan N, Itzkovitz S, Milo R, Alon U.

Bioinformatics. 2004 Jul 22;20(11):1746-58. Epub 2004 Mar 4.

PMID:
15001476
15.

Subgraphs in random networks.

Itzkovitz S, Milo R, Kashtan N, Ziv G, Alon U.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 2):026127. Epub 2003 Aug 25.

PMID:
14525069
16.

Network motifs: simple building blocks of complex networks.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U.

Science. 2002 Oct 25;298(5594):824-7.

Supplemental Content

Loading ...
Support Center