Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 7

1.

Nanoscale Engineering of Designer Cellulosomes.

Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D.

Adv Mater. 2016 Jul;28(27):5619-47. doi: 10.1002/adma.201503948. Epub 2016 Jan 7.

PMID:
26748482
2.

Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens.

Weinstein JY, Slutzki M, Karpol A, Barak Y, Gul O, Lamed R, Bayer EA, Fried DB.

J Mol Recognit. 2015 Mar;28(3):148-54. doi: 10.1002/jmr.2380. Epub 2015 Jan 30.

PMID:
25639797
3.

Intramolecular clasp of the cellulosomal Ruminococcus flavefaciens ScaA dockerin module confers structural stability.

Slutzki M, Jobby MK, Chitayat S, Karpol A, Dassa B, Barak Y, Lamed R, Smith SP, Bayer EA.

FEBS Open Bio. 2013 Sep 25;3:398-405. doi: 10.1016/j.fob.2013.09.006. eCollection 2013.

4.

Structural and functional characterization of a novel type-III dockerin from Ruminococcus flavefaciens.

Karpol A, Jobby MK, Slutzki M, Noach I, Chitayat S, Smith SP, Bayer EA.

FEBS Lett. 2013 Jan 4;587(1):30-6. doi: 10.1016/j.febslet.2012.11.012. Epub 2012 Nov 27.

5.

Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins.

Demishtein A, Karpol A, Barak Y, Lamed R, Bayer EA.

J Mol Recognit. 2010 Nov-Dec;23(6):525-35. doi: 10.1002/jmr.1029.

PMID:
21038354
6.

Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction.

Karpol A, Kantorovich L, Demishtein A, Barak Y, Morag E, Lamed R, Bayer EA.

J Mol Recognit. 2009 Mar-Apr;22(2):91-8. doi: 10.1002/jmr.926.

PMID:
18979459
7.

Supplemental Content

Loading ...
Support Center