Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

Low Thyroid Hormone Levels Disrupt Thyrotrope Development.

Tonyushkina KN, Krug S, Ortiz-Toro T, Mascari T, Karlstrom RO.

Endocrinology. 2017 Sep 1;158(9):2774-2782. doi: 10.1210/en.2016-1935.

2.

Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia.

Breves JP, McCormick SD, Karlstrom RO.

Gen Comp Endocrinol. 2014 Jul 1;203:21-8. doi: 10.1016/j.ygcen.2013.12.014. Epub 2014 Jan 13. Review.

3.

Embryonic exposure to excess thyroid hormone causes thyrotrope cell death.

Tonyushkina KN, Shen MC, Ortiz-Toro T, Karlstrom RO.

J Clin Invest. 2014 Jan;124(1):321-7. doi: 10.1172/JCI70038. Epub 2013 Dec 9. Erratum in: J Clin Invest. 2015 Feb;125(2):881.

4.

Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill.

Breves JP, Serizier SB, Goffin V, McCormick SD, Karlstrom RO.

Mol Cell Endocrinol. 2013 Apr 30;369(1-2):98-106. doi: 10.1016/j.mce.2013.01.021. Epub 2013 Feb 6.

5.

In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration.

Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC, Karlstrom RO, Poss KD.

Development. 2013 Feb 1;140(3):660-6. doi: 10.1242/dev.088526.

6.

Brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish.

Bergeron SA, Tyurina OV, Miller E, Bagas A, Karlstrom RO.

Development. 2011 Jan;138(1):75-85. doi: 10.1242/dev.057950. Epub 2010 Nov 29.

7.

Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis.

Barresi MJ, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO.

Dev Dyn. 2010 Oct;239(10):2603-18. doi: 10.1002/dvdy.22393.

8.

The transcriptional repressor REST/NRSF modulates hedgehog signaling.

Gates KP, Mentzer L, Karlstrom RO, Sirotkin HI.

Dev Biol. 2010 Apr 15;340(2):293-305. doi: 10.1016/j.ydbio.2010.01.029. Epub 2010 Feb 1.

9.

A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish.

Placinta M, Shen MC, Achermann M, Karlstrom RO.

BMC Dev Biol. 2009 Dec 30;9:73. doi: 10.1186/1471-213X-9-73.

10.

Regulation of muscle differentiation and survival by Acheron.

Wang Z, Glenn H, Brown C, Valavanis C, Liu JX, Seth A, Thomas JE, Karlstrom RO, Schwartz LM.

Mech Dev. 2009 Aug-Sep;126(8-9):700-9. doi: 10.1016/j.mod.2009.05.003. Epub 2009 May 28.

11.

A dynamic Gli code interprets Hh signals to regulate induction, patterning, and endocrine cell specification in the zebrafish pituitary.

Devine CA, Sbrogna JL, Guner B, Osgood M, Shen MC, Karlstrom RO.

Dev Biol. 2009 Feb 1;326(1):143-54. doi: 10.1016/j.ydbio.2008.11.006. Epub 2008 Nov 20.

12.
13.

Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos.

Bergeron SA, Milla LA, Villegas R, Shen MC, Burgess SM, Allende ML, Karlstrom RO, Palma V.

Genomics. 2008 Feb;91(2):165-77. Epub 2007 Dec 11.

15.

Electroporation of DNA, RNA, and morpholinos into zebrafish embryos.

Cerda GA, Thomas JE, Allende ML, Karlstrom RO, Palma V.

Methods. 2006 Jul;39(3):207-11.

PMID:
16837210
16.

belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain.

Seth A, Culverwell J, Walkowicz M, Toro S, Rick JM, Neuhauss SC, Varga ZM, Karlstrom RO.

Development. 2006 Feb;133(4):725-35. Erratum in: Development. 2006 May;133(9):1856.

17.

Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain.

Barresi MJ, Hutson LD, Chien CB, Karlstrom RO.

Development. 2005 Aug;132(16):3643-56. Epub 2005 Jul 20.

18.

Gli function is essential for motor neuron induction in zebrafish.

Vanderlaan G, Tyurina OV, Karlstrom RO, Chandrasekhar A.

Dev Biol. 2005 Jun 15;282(2):550-70.

19.

Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling.

Tyurina OV, Guner B, Popova E, Feng J, Schier AF, Kohtz JD, Karlstrom RO.

Dev Biol. 2005 Jan 15;277(2):537-56.

20.

Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids.

Feng J, White B, Tyurina OV, Guner B, Larson T, Lee HY, Karlstrom RO, Kohtz JD.

Development. 2004 Sep;131(17):4357-70. Epub 2004 Aug 4.

21.

The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling.

Sekimizu K, Nishioka N, Sasaki H, Takeda H, Karlstrom RO, Kawakami A.

Development. 2004 Jun;131(11):2521-32. Epub 2004 Apr 28.

22.

Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons.

Ungos JM, Karlstrom RO, Raible DW.

Development. 2003 Nov;130(22):5351-62. Epub 2003 Sep 16.

23.

Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development.

Karlstrom RO, Tyurina OV, Kawakami A, Nishioka N, Talbot WS, Sasaki H, Schier AF.

Development. 2003 Apr;130(8):1549-64.

24.

Multiple roles for Hedgehog signaling in zebrafish pituitary development.

Sbrogna JL, Barresi MJ, Karlstrom RO.

Dev Biol. 2003 Feb 1;254(1):19-35.

25.

Making the connection: retinal axon guidance in the zebrafish.

Culverwell J, Karlstrom RO.

Semin Cell Dev Biol. 2002 Dec;13(6):497-506. Review.

PMID:
12468253
26.

Sonic hedgehog is required early in pancreatic islet development.

diIorio PJ, Moss JB, Sbrogna JL, Karlstrom RO, Moss LG.

Dev Biol. 2002 Apr 1;244(1):75-84.

27.

Zebrafish mutations in Gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage.

Kondoh H, Uchikawa M, Yoda H, Takeda H, Furutani-Seiki M, Karlstrom RO.

Mech Dev. 2000 Sep;96(2):165-74.

PMID:
10960781
28.
29.

Genetic analysis of axon guidance and mapping in the zebrafish.

Karlstrom RO, Trowe T, Bonhoeffer F.

Trends Neurosci. 1997 Jan;20(1):3-8. Review.

PMID:
9004410
30.

A flipbook of zebrafish embryogenesis.

Karlstrom RO, Kane DA.

Development. 1996 Dec;123:461. No abstract available.

31.

Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio.

Trowe T, Klostermann S, Baier H, Granato M, Crawford AD, Grunewald B, Hoffmann H, Karlstrom RO, Meyer SU, Müller B, Richter S, Nüsslein-Volhard C, Bonhoeffer F.

Development. 1996 Dec;123:439-50.

32.

Zebrafish mutations affecting retinotectal axon pathfinding.

Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Müller BK, Richter S, van Eeden FJ, Nüsslein-Volhard C, Bonhoeffer F.

Development. 1996 Dec;123:427-38.

33.

Genetic dissection of the retinotectal projection.

Baier H, Klostermann S, Trowe T, Karlstrom RO, Nüsslein-Volhard C, Bonhoeffer F.

Development. 1996 Dec;123:415-25.

34.

Mutations affecting development of the midline and general body shape during zebrafish embryogenesis.

Brand M, Heisenberg CP, Warga RM, Pelegri F, Karlstrom RO, Beuchle D, Picker A, Jiang YJ, Furutani-Seiki M, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C.

Development. 1996 Dec;123:129-42.

35.
36.

Position-specific expression of the annulin protein during grasshopper embryogenesis.

Bastiani MJ, de Couet HG, Quinn JM, Karlstrom RO, Kotrla K, Goodman CS, Ball EE.

Dev Biol. 1992 Nov;154(1):129-42.

PMID:
1426622

Supplemental Content

Loading ...
Support Center