Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 148

1.

Photochemistry of iron in aquatic environments.

Lueder U, Jørgensen BB, Kappler A, Schmidt C.

Environ Sci Process Impacts. 2020 Jan 6. doi: 10.1039/c9em00415g. [Epub ahead of print]

PMID:
31904051
2.

Fe(III) Photoreduction Producing Feaq2+ in Oxic Freshwater Sediment.

Lueder U, Jørgensen BB, Kappler A, Schmidt C.

Environ Sci Technol. 2020 Jan 21;54(2):862-869. doi: 10.1021/acs.est.9b05682. Epub 2020 Jan 10.

PMID:
31886652
3.

Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans.

Thompson KJ, Kenward PA, Bauer KW, Warchola T, Gauger T, Martinez R, Simister RL, Michiels CC, Llirós M, Reinhard CT, Kappler A, Konhauser KO, Crowe SA.

Sci Adv. 2019 Nov 27;5(11):eaav2869. doi: 10.1126/sciadv.aav2869. eCollection 2019 Nov.

4.

Author Correction: Tracing microplastics in aquatic environments based on sediment analogies.

Enders K, Käppler A, Biniasch O, Feldens P, Stollberg N, Lange X, Fischer D, Eichhorn KJ, Pollehne F, Oberbeckmann S, Labrenz M.

Sci Rep. 2019 Dec 6;9(1):18839. doi: 10.1038/s41598-019-54997-z.

5.

Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction.

Yang Z, Sun T, Subdiaga E, Obst M, Haderlein SB, Maisch M, Kretzschmar R, Angenent LT, Kappler A.

Sci Total Environ. 2020 Feb 10;703:135515. doi: 10.1016/j.scitotenv.2019.135515. Epub 2019 Nov 14.

PMID:
31761354
6.

Effect of Fe-metabolizing bacteria and humic substances on magnetite nanoparticle reactivity towards arsenic and chromium.

Sundman A, Vitzthum AL, Adaktylos-Surber K, Figueroa AI, van der Laan G, Daus B, Kappler A, Byrne JM.

J Hazard Mater. 2020 Feb 15;384:121450. doi: 10.1016/j.jhazmat.2019.121450. Epub 2019 Oct 14.

PMID:
31759758
7.

Tracing microplastics in aquatic environments based on sediment analogies.

Enders K, Käppler A, Biniasch O, Feldens P, Stollberg N, Lange X, Fischer D, Eichhorn KJ, Pollehne F, Oberbeckmann S, Labrenz M.

Sci Rep. 2019 Oct 23;9(1):15207. doi: 10.1038/s41598-019-50508-2. Erratum in: Sci Rep. 2019 Dec 6;9(1):18839.

8.

N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment.

Otte JM, Blackwell N, Ruser R, Kappler A, Kleindienst S, Schmidt C.

Sci Rep. 2019 Jul 31;9(1):10691. doi: 10.1038/s41598-019-47172-x.

9.

How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?

Schad M, Konhauser KO, Sánchez-Baracaldo P, Kappler A, Bryce C.

Free Radic Biol Med. 2019 Aug 20;140:154-166. doi: 10.1016/j.freeradbiomed.2019.07.014. Epub 2019 Jul 16. Review.

PMID:
31323314
10.

Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction.

Notini L, Byrne JM, Tomaszewski EJ, Latta DE, Zhou Z, Scherer MM, Kappler A.

Environ Sci Technol. 2019 Aug 6;53(15):8883-8891. doi: 10.1021/acs.est.9b03208. Epub 2019 Jul 18.

PMID:
31284712
11.

Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.

Maisch M, Lueder U, Laufer K, Scholze C, Kappler A, Schmidt C.

Environ Sci Technol. 2019 Jul 16;53(14):8197-8204. doi: 10.1021/acs.est.9b01531. Epub 2019 Jun 27.

PMID:
31203607
12.

Draft Genome Sequence of Chlorobium sp. Strain N1, a Marine Fe(II)-Oxidizing Green Sulfur Bacterium.

Bryce C, Blackwell N, Straub D, Kleindienst S, Kappler A.

Microbiol Resour Announc. 2019 May 2;8(18). pii: e00080-19. doi: 10.1128/MRA.00080-19.

13.

Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.

ThomasArrigo LK, Byrne JM, Kappler A, Kretzschmar R.

Environ Sci Technol. 2018 Nov 6;52(21):12316-12326. doi: 10.1021/acs.est.8b03206. Epub 2018 Oct 16.

PMID:
30991468
14.

Pyrite formation from FeS and H2S is mediated through microbial redox activity.

Thiel J, Byrne JM, Kappler A, Schink B, Pester M.

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6897-6902. doi: 10.1073/pnas.1814412116. Epub 2019 Mar 18.

15.

Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.

Peng C, Bryce C, Sundman A, Kappler A.

Appl Environ Microbiol. 2019 Apr 4;85(8). pii: e02826-18. doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.

16.

Heavy metal mobility and valuable contents of processed municipal solid waste incineration residues from Southwestern Germany.

Abramov S, He J, Wimmer D, Lemloh ML, Muehe EM, Gann B, Roehm E, Kirchhof R, Babechuk MG, Schoenberg R, Thorwarth H, Helle T, Kappler A.

Waste Manag. 2018 Sep;79:735-743. doi: 10.1016/j.wasman.2018.08.010. Epub 2018 Aug 28.

PMID:
30343806
17.

Sterilization impacts on marine sediment---Are we able to inactivate microorganisms in environmental samples?

Otte JM, Blackwell N, Soos V, Rughöft S, Maisch M, Kappler A, Kleindienst S, Schmidt C.

FEMS Microbiol Ecol. 2018 Dec 1;94(12). doi: 10.1093/femsec/fiy189.

PMID:
30247566
18.

UV radiation limited the expansion of cyanobacteria in early marine photic environments.

Mloszewska AM, Cole DB, Planavsky NJ, Kappler A, Whitford DS, Owttrim GW, Konhauser KO.

Nat Commun. 2018 Aug 6;9(1):3088. doi: 10.1038/s41467-018-05520-x.

19.

Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications.

Bryce C, Blackwell N, Schmidt C, Otte J, Huang YM, Kleindienst S, Tomaszewski E, Schad M, Warter V, Peng C, Byrne JM, Kappler A.

Environ Microbiol. 2018 Oct;20(10):3462-3483. doi: 10.1111/1462-2920.14328. Epub 2018 Oct 10. Review.

PMID:
30058270
20.

Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.

Bryce C, Franz-Wachtel M, Nalpas NC, Miot J, Benzerara K, Byrne JM, Kleindienst S, Macek B, Kappler A.

Appl Environ Microbiol. 2018 Aug 1;84(16). pii: e01166-18. doi: 10.1128/AEM.01166-18. Print 2018 Aug 15.

21.

Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments.

Käppler A, Fischer M, Scholz-Böttcher BM, Oberbeckmann S, Labrenz M, Fischer D, Eichhorn KJ, Voit B.

Anal Bioanal Chem. 2018 Aug;410(21):5313-5327. doi: 10.1007/s00216-018-1185-5. Epub 2018 Jun 16.

PMID:
29909455
22.

A case study for late Archean and Proterozoic biogeochemical iron- and sulphur cycling in a modern habitat-the Arvadi Spring.

Koeksoy E, Halama M, Hagemann N, Weigold PR, Laufer K, Kleindienst S, Byrne JM, Sundman A, Hanselmann K, Halevy I, Schoenberg R, Konhauser KO, Kappler A.

Geobiology. 2018 Jul;16(4):353-368. doi: 10.1111/gbi.12293. Epub 2018 Jun 9.

PMID:
29885273
23.
24.

The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients.

Otte JM, Harter J, Laufer K, Blackwell N, Straub D, Kappler A, Kleindienst S.

Environ Microbiol. 2018 Jul;20(7):2483-2499. doi: 10.1111/1462-2920.14260. Epub 2018 Jul 26.

PMID:
29708639
25.

Oxidation of Fe(II)-Organic Matter Complexes in the Presence of the Mixotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacterium Acidovorax sp. BoFeN1.

Peng C, Sundman A, Bryce C, Catrouillet C, Borch T, Kappler A.

Environ Sci Technol. 2018 May 15;52(10):5753-5763. doi: 10.1021/acs.est.8b00953. Epub 2018 Apr 27.

PMID:
29671587
26.

The Role of Ultrasound in Screening Dense Breasts-A Review of the Literature and Practical Solutions for Implementation.

Thigpen D, Kappler A, Brem R.

Diagnostics (Basel). 2018 Mar 16;8(1). pii: E20. doi: 10.3390/diagnostics8010020. Review.

27.

Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater.

Swanner ED, Maisch M, Wu W, Kappler A.

Sci Rep. 2018 Mar 9;8(1):4238. doi: 10.1038/s41598-018-22694-y.

28.

Insights into Carbon Metabolism Provided by Fluorescence In Situ Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture.

Tominski C, Lösekann-Behrens T, Ruecker A, Hagemann N, Kleindienst S, Mueller CW, Höschen C, Kögel-Knabner I, Kappler A, Behrens S.

Appl Environ Microbiol. 2018 Apr 16;84(9). pii: e02166-17. doi: 10.1128/AEM.02166-17. Print 2018 May 1.

29.

Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.

Tominski C, Heyer H, Lösekann-Behrens T, Behrens S, Kappler A.

Appl Environ Microbiol. 2018 Apr 16;84(9). pii: e02173-17. doi: 10.1128/AEM.02173-17. Print 2018 May 1.

30.

Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals.

Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, Ruby C, Kappler A, Haderlein SB.

Chem Rev. 2018 Apr 11;118(7):3251-3304. doi: 10.1021/acs.chemrev.7b00224. Epub 2018 Feb 21.

PMID:
29465223
31.

Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.

Lueder U, Druschel G, Emerson D, Kappler A, Schmidt C.

FEMS Microbiol Ecol. 2018 Feb 1;94(2). doi: 10.1093/femsec/fix177.

PMID:
29228192
32.

Enhancing handwashing frequency and technique of primary caregivers in Harare, Zimbabwe: A cluster-randomized controlled trial using behavioral and microbial outcomes.

Friedrich MND, Kappler A, Mosler HJ.

Soc Sci Med. 2018 Jan;196:66-76. doi: 10.1016/j.socscimed.2017.10.025. Epub 2017 Nov 4.

PMID:
29128787
33.

Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.

Schaedler F, Lockwood C, Lueder U, Glombitza C, Kappler A, Schmidt C.

Appl Environ Microbiol. 2018 Jan 2;84(2). pii: e02013-17. doi: 10.1128/AEM.02013-17. Print 2018 Jan 15.

34.

Interactions between magnetite and humic substances: redox reactions and dissolution processes.

Sundman A, Byrne JM, Bauer I, Menguy N, Kappler A.

Geochem Trans. 2017 Oct 19;18(1):6. doi: 10.1186/s12932-017-0044-1.

35.

Organic coating on biochar explains its nutrient retention and stimulation of soil fertility.

Hagemann N, Joseph S, Schmidt HP, Kammann CI, Harter J, Borch T, Young RB, Varga K, Taherymoosavi S, Elliott KW, McKenna A, Albu M, Mayrhofer C, Obst M, Conte P, Dieguez-Alonso A, Orsetti S, Subdiaga E, Behrens S, Kappler A.

Nat Commun. 2017 Oct 20;8(1):1089. doi: 10.1038/s41467-017-01123-0.

36.

Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

Hagemann N, Subdiaga E, Orsetti S, de la Rosa JM, Knicker H, Schmidt HP, Kappler A, Behrens S.

Sci Total Environ. 2018 Feb 1;613-614:20-29. doi: 10.1016/j.scitotenv.2017.08.161. Epub 2017 Sep 9.

PMID:
28892724
37.

Recovery of precious metals from waste streams.

He J, Kappler A.

Microb Biotechnol. 2017 Sep;10(5):1194-1198. doi: 10.1111/1751-7915.12759. Epub 2017 Jul 13.

38.

Current and future microbiological strategies to remove As and Cd from drinking water.

Byrne JM, Kappler A.

Microb Biotechnol. 2017 Sep;10(5):1098-1101. doi: 10.1111/1751-7915.12742. Epub 2017 Jul 11. Review. No abstract available.

39.

Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation.

Harter J, El-Hadidi M, Huson DH, Kappler A, Behrens S.

Sci Rep. 2017 Jun 13;7(1):3338. doi: 10.1038/s41598-017-03282-y.

40.

Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic.

Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA.

Environ Sci Technol. 2017 Jul 5;51(13):7326-7339. doi: 10.1021/acs.est.7b00689. Epub 2017 Jun 23.

41.

Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

ThomasArrigo LK, Mikutta C, Byrne J, Kappler A, Kretzschmar R.

Environ Sci Technol. 2017 Jun 20;51(12):6897-6907. doi: 10.1021/acs.est.7b01495. Epub 2017 Jun 7.

PMID:
28590131
42.

Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.

Nordhoff M, Tominski C, Halama M, Byrne JM, Obst M, Kleindienst S, Behrens S, Kappler A.

Appl Environ Microbiol. 2017 Jun 16;83(13). pii: e00752-17. doi: 10.1128/AEM.00752-17. Print 2017 Jul 1.

43.

Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment.

Laufer K, Niemeyer A, Nikeleit V, Halama M, Byrne JM, Kappler A.

FEMS Microbiol Ecol. 2017 May 1;93(5). doi: 10.1093/femsec/fix054.

PMID:
28431154
44.

Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002.

Swanner ED, Bayer T, Wu W, Hao L, Obst M, Sundman A, Byrne JM, Michel FM, Kleinhanns IC, Kappler A, Schoenberg R.

Environ Sci Technol. 2017 May 2;51(9):4897-4906. doi: 10.1021/acs.est.6b05833. Epub 2017 Apr 21.

45.

Nitrate capture and slow release in biochar amended compost and soil.

Hagemann N, Kammann CI, Schmidt HP, Kappler A, Behrens S.

PLoS One. 2017 Feb 15;12(2):e0171214. doi: 10.1371/journal.pone.0171214. eCollection 2017.

46.

Cryptic biogeochemical cycles: unravelling hidden redox reactions.

Kappler A, Bryce C.

Environ Microbiol. 2017 Mar;19(3):842-846. doi: 10.1111/1462-2920.13687. Epub 2017 Mar 1. No abstract available.

PMID:
28168803
47.

Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks.

Laufer K, Nordhoff M, Halama M, Martinez RE, Obst M, Nowak M, Stryhanyuk H, Richnow HH, Kappler A.

Appl Environ Microbiol. 2017 Mar 31;83(8). pii: e03118-16. doi: 10.1128/AEM.03118-16. Print 2017 Apr 15.

48.

Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil.

Harter J, Guzman-Bustamante I, Kuehfuss S, Ruser R, Well R, Spott O, Kappler A, Behrens S.

Sci Rep. 2016 Dec 23;6:39574. doi: 10.1038/srep39574.

49.

The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems.

Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H, Peckmann J, Poulton SW, Nickel JC, Mangelsdorf K, Kalyuzhnaya M, Sidgwick FR, Talbot HM.

PLoS One. 2016 Nov 8;11(11):e0165635. doi: 10.1371/journal.pone.0165635. eCollection 2016.

50.

Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids.

Yang Z, Kappler A, Jiang J.

Environ Sci Technol. 2016 Nov 15;50(22):12105-12113. Epub 2016 Nov 4.

PMID:
27759370

Supplemental Content

Loading ...
Support Center