Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ.

Ta TT, Dikmen HO, Schilling S, Chausse B, Lewen A, Hollnagel JO, Kann O.

Proc Natl Acad Sci U S A. 2019 Feb 19. pii: 201813562. doi: 10.1073/pnas.1813562116. [Epub ahead of print]

PMID:
30782788
2.

Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis.

Hollnagel JO, Elzoheiry S, Gorgas K, Kins S, Beretta CA, Kirsch J, Kuhse J, Kann O, Kiss E.

PLoS One. 2019 Jan 15;14(1):e0209228. doi: 10.1371/journal.pone.0209228. eCollection 2019.

3.

Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices.

Berndt N, Rösner J, Haq RU, Kann O, Kovács R, Holzhütter HG, Spies C, Liotta A.

Arch Toxicol. 2018 Oct;92(10):3191-3205. doi: 10.1007/s00204-018-2295-8. Epub 2018 Aug 24.

4.

Metabolic modulation of neuronal gamma-band oscillations.

Vodovozov W, Schneider J, Elzoheiry S, Hollnagel JO, Lewen A, Kann O.

Pflugers Arch. 2018 Sep;470(9):1377-1389. doi: 10.1007/s00424-018-2156-6. Epub 2018 May 28.

PMID:
29808353
5.

Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus.

Papageorgiou IE, Valous NA, Lahrmann B, Janova H, Klaft ZJ, Koch A, Schneider UC, Vajkoczy P, Heppner FL, Grabe N, Halama N, Heinemann U, Kann O.

Glia. 2018 May;66(5):920-933. doi: 10.1002/glia.23292. Epub 2018 Jan 19.

PMID:
29350438
6.

Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus.

Schneider J, Berndt N, Papageorgiou IE, Maurer J, Bulik S, Both M, Draguhn A, Holzhütter HG, Kann O.

J Cereb Blood Flow Metab. 2019 May;39(5):859-873. doi: 10.1177/0271678X17740091. Epub 2017 Nov 3.

PMID:
29099662
7.

Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels.

Hefter D, Kaiser M, Weyer SW, Papageorgiou IE, Both M, Kann O, Müller UC, Draguhn A.

J Neurosci. 2016 Aug 10;36(32):8356-71. doi: 10.1523/JNEUROSCI.4130-15.2016.

8.

Energy and Potassium Ion Homeostasis during Gamma Oscillations.

Kann O, Hollnagel JO, Elzoheiry S, Schneider J.

Front Mol Neurosci. 2016 Jun 16;9:47. doi: 10.3389/fnmol.2016.00047. eCollection 2016. Review.

9.

Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.

Blank T, Detje CN, Spieß A, Hagemeyer N, Brendecke SM, Wolfart J, Staszewski O, Zöller T, Papageorgiou I, Schneider J, Paricio-Montesinos R, Eisel UL, Manahan-Vaughan D, Jansen S, Lienenklaus S, Lu B, Imai Y, Müller M, Goelz SE, Baker DP, Schwaninger M, Kann O, Heikenwalder M, Kalinke U, Prinz M.

Immunity. 2016 Apr 19;44(4):901-12. doi: 10.1016/j.immuni.2016.04.005.

10.

TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ.

Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, Hanisch UK, Kann O.

Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):212-7. doi: 10.1073/pnas.1513853113. Epub 2015 Dec 22.

11.

The interneuron energy hypothesis: Implications for brain disease.

Kann O.

Neurobiol Dis. 2016 Jun;90:75-85. doi: 10.1016/j.nbd.2015.08.005. Epub 2015 Aug 16. Review.

PMID:
26284893
12.

Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients.

Berndt N, Kann O, Holzhütter HG.

J Cereb Blood Flow Metab. 2015 Sep;35(9):1494-506. doi: 10.1038/jcbfm.2015.70. Epub 2015 Apr 22.

13.

A reliable model for gamma oscillations in hippocampal tissue.

Schneider J, Lewen A, Ta TT, Galow LV, Isola R, Papageorgiou IE, Kann O.

J Neurosci Res. 2015 Jul;93(7):1067-78. doi: 10.1002/jnr.23590. Epub 2015 Mar 24.

PMID:
25808046
14.

Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins.

Sandow N, Kim S, Raue C, Päsler D, Klaft ZJ, Antonio LL, Hollnagel JO, Kovacs R, Kann O, Horn P, Vajkoczy P, Holtkamp M, Meencke HJ, Cavalheiro EA, Pragst F, Gabriel S, Lehmann TN, Heinemann U.

Front Neurol. 2015 Feb 18;6:30. doi: 10.3389/fneur.2015.00030. eCollection 2015.

15.

Energy substrates that fuel fast neuronal network oscillations.

Galow LV, Schneider J, Lewen A, Ta TT, Papageorgiou IE, Kann O.

Front Neurosci. 2014 Dec 5;8:398. doi: 10.3389/fnins.2014.00398. eCollection 2014.

16.

Highly energized inhibitory interneurons are a central element for information processing in cortical networks.

Kann O, Papageorgiou IE, Draguhn A.

J Cereb Blood Flow Metab. 2014 Aug;34(8):1270-82. doi: 10.1038/jcbfm.2014.104. Epub 2014 Jun 4. Review.

17.

Widespread activation of microglial cells in the hippocampus of chronic epileptic rats correlates only partially with neurodegeneration.

Papageorgiou IE, Fetani AF, Lewen A, Heinemann U, Kann O.

Brain Struct Funct. 2015 Jul;220(4):2423-39. doi: 10.1007/s00429-014-0802-0. Epub 2014 May 31.

PMID:
24878824
18.

Phosphorylation of the actin binding protein Drebrin at S647 is regulated by neuronal activity and PTEN.

Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ.

PLoS One. 2013 Aug 5;8(8):e71957. doi: 10.1371/journal.pone.0071957. Print 2013.

19.

Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network.

Huchzermeyer C, Berndt N, Holzhütter HG, Kann O.

J Cereb Blood Flow Metab. 2013 Feb;33(2):263-71. doi: 10.1038/jcbfm.2012.165. Epub 2012 Nov 21.

20.

Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse.

Liotta A, Rösner J, Huchzermeyer C, Wojtowicz A, Kann O, Schmitz D, Heinemann U, Kovács R.

J Cereb Blood Flow Metab. 2012 Nov;32(11):2076-83. doi: 10.1038/jcbfm.2012.116. Epub 2012 Aug 29.

21.

The energy demand of fast neuronal network oscillations: insights from brain slice preparations.

Kann O.

Front Pharmacol. 2012 Jan 10;2:90. doi: 10.3389/fphar.2011.00090. eCollection 2011.

22.

Muscarinic receptor activation determines the effects of store-operated Ca(2+)-entry on excitability and energy metabolism in pyramidal neurons.

Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovács R.

Cell Calcium. 2012 Jan;51(1):40-50. doi: 10.1016/j.ceca.2011.10.004. Epub 2011 Nov 14.

PMID:
22088219
23.

Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats.

Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U.

Glia. 2011 Nov;59(11):1706-18. doi: 10.1002/glia.21217. Epub 2011 Jul 20.

PMID:
21780187
24.

Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria.

Kann O, Huchzermeyer C, Kovács R, Wirtz S, Schuelke M.

Brain. 2011 Feb;134(Pt 2):345-58. doi: 10.1093/brain/awq333. Epub 2010 Dec 22.

PMID:
21183487
25.

Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation.

Malinska D, Kulawiak B, Kudin AP, Kovacs R, Huchzermeyer C, Kann O, Szewczyk A, Kunz WS.

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1163-70. doi: 10.1016/j.bbabio.2010.03.001. Epub 2010 Mar 6.

26.

Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices.

Kovács R, Rabanus A, Otáhal J, Patzak A, Kardos J, Albus K, Heinemann U, Kann O.

J Neurosci. 2009 Jul 1;29(26):8565-77. doi: 10.1523/JNEUROSCI.5698-08.2009.

27.

GABAergic activities enhance macrophage inflammatory protein-1alpha release from microglia (brain macrophages) in postnatal mouse brain.

Cheung G, Kann O, Kohsaka S, Făerber K, Kettenmann H.

J Physiol. 2009 Feb 15;587(Pt 4):753-68. doi: 10.1113/jphysiol.2008.163923. Epub 2008 Dec 1.

28.

Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.

Huchzermeyer C, Albus K, Gabriel HJ, Otáhal J, Taubenberger N, Heinemann U, Kovács R, Kann O.

J Neurosci. 2008 Jan 30;28(5):1153-62. doi: 10.1523/JNEUROSCI.4105-07.2008.

29.

ERK activation causes epilepsy by stimulating NMDA receptor activity.

Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JG, Kann O, Behrens A.

EMBO J. 2007 Nov 28;26(23):4891-901. Epub 2007 Nov 1.

30.

Mitochondria and neuronal activity.

Kann O, Kovács R.

Am J Physiol Cell Physiol. 2007 Feb;292(2):C641-57. Epub 2006 Nov 8. Review.

31.

Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices.

Jandová K, Päsler D, Antonio LL, Raue C, Ji S, Njunting M, Kann O, Kovács R, Meencke HJ, Cavalheiro EA, Heinemann U, Gabriel S, Lehmann TN.

Brain. 2006 Dec;129(Pt 12):3290-306. Epub 2006 Sep 2.

PMID:
16951410
32.

Novel mechanisms underlying drug resistance in temporal lobe epilepsy.

Heinemann U, Kann O, Remy S, Beck H.

Adv Neurol. 2006;97:85-95. Review. No abstract available.

PMID:
16383118
33.

Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans.

Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann TN, Gabriel S, Heinemann U.

Brain. 2005 Oct;128(Pt 10):2396-407. Epub 2005 Jun 15.

PMID:
15958506
34.
37.
38.
39.

Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures.

Kovács R, Schuchmann S, Gabriel S, Kann O, Kardos J, Heinemann U.

J Neurophysiol. 2002 Dec;88(6):2909-18.

40.

Cell death and metabolic activity during epileptiform discharges and status epilepticus in the hippocampus.

Heinemann U, Buchheim K, Gabriel S, Kann O, Kovacs R, Schuchmann S.

Prog Brain Res. 2002;135:197-210. Review.

PMID:
12143341
41.

Coupling of electrical and metabolic activity during epileptiform discharges.

Heinemann U, Buchheim K, Gabriel S, Kann O, Kovács R, Schuchmann S.

Epilepsia. 2002;43 Suppl 5:168-73.

42.

The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls.

Hanisch UK, Prinz M, Angstwurm K, Häusler KG, Kann O, Kettenmann H, Weber JR.

Eur J Immunol. 2001 Jul;31(7):2104-15.

43.

Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices.

Schuchmann S, Kovacs R, Kann O, Heinemann U, Buchheim K.

Brain Res Brain Res Protoc. 2001 Jul;7(3):267-76.

PMID:
11431129
44.

Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion.

Lyons SA, Pastor A, Ohlemeyer C, Kann O, Wiegand F, Prass K, Knapp F, Kettenmann H, Dirnagl U.

J Cereb Blood Flow Metab. 2000 Nov;20(11):1537-49.

PMID:
11083228
45.

Activation of mouse microglial cells affects P2 receptor signaling.

Möller T, Kann O, Verkhratsky A, Kettenmann H.

Brain Res. 2000 Jan 17;853(1):49-59.

PMID:
10627307
46.

Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines.

Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR, Hanisch UK.

J Neuropathol Exp Neurol. 1999 Oct;58(10):1078-89.

PMID:
10515231
47.

Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors.

Möller T, Kann O, Prinz M, Kirchhoff F, Verkhratsky A, Kettenmann H.

Neuroreport. 1997 Jul 7;8(9-10):2127-31.

PMID:
9243597

Supplemental Content

Support Center