Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 145

1.

Structural basis of unidirectional export of lipopolysaccharide to the cell surface.

Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N, Kruse AC, Kahne D.

Nature. 2019 Mar;567(7749):550-553. doi: 10.1038/s41586-019-1039-0. Epub 2019 Mar 20.

PMID:
30894747
2.

Fine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli.

Hart EM, O'Connell A, Tang K, Wzorek JS, Grabowicz M, Kahne D, Silhavy TJ.

J Bacteriol. 2019 May 8;201(11). pii: e00745-18. doi: 10.1128/JB.00745-18. Print 2019 Jun 1.

PMID:
30858299
3.

FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein.

Taguchi A, Welsh MA, Marmont LS, Lee W, Sjodt M, Kruse AC, Kahne D, Bernhardt TG, Walker S.

Nat Microbiol. 2019 Apr;4(4):587-594. doi: 10.1038/s41564-018-0345-x. Epub 2019 Jan 28.

PMID:
30692671
4.

A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery.

Rohs PDA, Buss J, Sim SI, Squyres GR, Srisuknimit V, Smith M, Cho H, Sjodt M, Kruse AC, Garner EC, Walker S, Kahne DE, Bernhardt TG.

PLoS Genet. 2018 Oct 18;14(10):e1007726. doi: 10.1371/journal.pgen.1007726. eCollection 2018 Oct.

5.

Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery.

Buss JA, Baidin V, Welsh MA, Flores-Kim J, Cho H, Wood BM, Uehara T, Walker S, Kahne D, Bernhardt TG.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01530-18. doi: 10.1128/AAC.01530-18. Print 2019 Jan.

6.

Outer Membrane Translocon Communicates with Inner Membrane ATPase To Stop Lipopolysaccharide Transport.

Xie R, Taylor RJ, Kahne D.

J Am Chem Soc. 2018 Oct 10;140(40):12691-12694. doi: 10.1021/jacs.8b07656. Epub 2018 Sep 28.

PMID:
30253645
7.

A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane.

Bertani BR, Taylor RJ, Nagy E, Kahne D, Ruiz N.

Mol Microbiol. 2018 Aug;109(4):541-554. doi: 10.1111/mmi.14059. Epub 2018 Aug 27.

PMID:
29995974
8.

Novobiocin Enhances Polymyxin Activity by Stimulating Lipopolysaccharide Transport.

Mandler MD, Baidin V, Lee J, Pahil KS, Owens TW, Kahne D.

J Am Chem Soc. 2018 Jun 6;140(22):6749-6753. doi: 10.1021/jacs.8b02283. Epub 2018 May 16.

9.

Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors.

Zhang G, Baidin V, Pahil KS, Moison E, Tomasek D, Ramadoss NS, Chatterjee AK, McNamara CW, Young TS, Schultz PG, Meredith TC, Kahne D.

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6834-6839. doi: 10.1073/pnas.1804670115. Epub 2018 May 7.

10.

Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis.

Sjodt M, Brock K, Dobihal G, Rohs PDA, Green AG, Hopf TA, Meeske AJ, Srisuknimit V, Kahne D, Walker S, Marks DS, Bernhardt TG, Rudner DZ, Kruse AC.

Nature. 2018 Apr 5;556(7699):118-121. doi: 10.1038/nature25985. Epub 2018 Mar 28.

11.

Membrane Potential Is Required for MurJ Function.

Rubino FA, Kumar S, Ruiz N, Walker S, Kahne DE.

J Am Chem Soc. 2018 Apr 4;140(13):4481-4484. doi: 10.1021/jacs.8b00942. Epub 2018 Mar 26.

12.

Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S.

ACS Infect Dis. 2018 Jun 8;4(6):1007-1018. doi: 10.1021/acsinfecdis.8b00017. Epub 2018 Mar 23.

13.

Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion.

Lee J, Sutterlin HA, Wzorek JS, Mandler MD, Hagan CL, Grabowicz M, Tomasek D, May MD, Hart EM, Silhavy TJ, Kahne D.

Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2359-2364. doi: 10.1073/pnas.1711727115. Epub 2018 Feb 20.

14.

Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge.

Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S, Foster PJ, Needleman DJ, Kahne D.

Science. 2018 Feb 16;359(6377):798-801. doi: 10.1126/science.aar1886.

15.

Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus.

Schaefer K, Owens TW, Kahne D, Walker S.

J Am Chem Soc. 2018 Feb 21;140(7):2442-2445. doi: 10.1021/jacs.7b13551. Epub 2018 Feb 9.

16.

Identification of a Functionally Unique Family of Penicillin-Binding Proteins.

Welsh MA, Taguchi A, Schaefer K, Van Tyne D, Lebreton F, Gilmore MS, Kahne D, Walker S.

J Am Chem Soc. 2017 Dec 13;139(49):17727-17730. doi: 10.1021/jacs.7b10170. Epub 2017 Nov 30.

17.

The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport.

May JM, Owens TW, Mandler MD, Simpson BW, Lazarus MB, Sherman DJ, Davis RM, Okuda S, Massefski W, Ruiz N, Kahne D.

J Am Chem Soc. 2017 Dec 6;139(48):17221-17224. doi: 10.1021/jacs.7b07736. Epub 2017 Nov 22.

18.

Outer Membrane Biogenesis.

Konovalova A, Kahne DE, Silhavy TJ.

Annu Rev Microbiol. 2017 Sep 8;71:539-556. doi: 10.1146/annurev-micro-090816-093754. Review.

19.

Peptidoglycan Cross-Linking Preferences of Staphylococcus aureus Penicillin-Binding Proteins Have Implications for Treating MRSA Infections.

Srisuknimit V, Qiao Y, Schaefer K, Kahne D, Walker S.

J Am Chem Soc. 2017 Jul 26;139(29):9791-9794. doi: 10.1021/jacs.7b04881. Epub 2017 Jul 11.

20.

Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams.

Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N, Walker S, Kahne D.

Nat Chem Biol. 2017 Jul;13(7):793-798. doi: 10.1038/nchembio.2388. Epub 2017 May 29.

21.

A Fluorescent Probe Distinguishes between Inhibition of Early and Late Steps of Lipopolysaccharide Biogenesis in Whole Cells.

Moison E, Xie R, Zhang G, Lebar MD, Meredith TC, Kahne D.

ACS Chem Biol. 2017 Apr 21;12(4):928-932. doi: 10.1021/acschembio.7b00159. Epub 2017 Mar 9.

22.

Membrane integration of an essential β-barrel protein prerequires burial of an extracellular loop.

Wzorek JS, Lee J, Tomasek D, Hagan CL, Kahne DE.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2598-2603. doi: 10.1073/pnas.1616576114. Epub 2017 Feb 21.

23.

In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins.

Schaefer K, Matano LM, Qiao Y, Kahne D, Walker S.

Nat Chem Biol. 2017 Apr;13(4):396-401. doi: 10.1038/nchembio.2302. Epub 2017 Feb 6.

24.

Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

Simpson BW, Owens TW, Orabella MJ, Davis RM, May JM, Trauger SA, Kahne D, Ruiz N.

MBio. 2016 Oct 18;7(5). pii: e01729-16. doi: 10.1128/mBio.01729-16.

25.

SEDS proteins are a widespread family of bacterial cell wall polymerases.

Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG, Rudner DZ.

Nature. 2016 Sep 29;537(7622):634-638. doi: 10.1038/nature19331. Epub 2016 Aug 15.

26.

Characterization of a stalled complex on the β-barrel assembly machine.

Lee J, Xue M, Wzorek JS, Wu T, Grabowicz M, Gronenberg LS, Sutterlin HA, Davis RM, Ruiz N, Silhavy TJ, Kahne DE.

Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8717-22. doi: 10.1073/pnas.1604100113. Epub 2016 Jul 20.

27.

Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity.

Markovski M, Bohrhunter JL, Lupoli TJ, Uehara T, Walker S, Kahne DE, Bernhardt TG.

Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4788-93. doi: 10.1073/pnas.1524538113. Epub 2016 Apr 11.

28.

Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model.

Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D.

Nat Rev Microbiol. 2016 Jun;14(6):337-45. doi: 10.1038/nrmicro.2016.25. Epub 2016 Mar 30. Review.

29.

The Mechanism of Action of Lysobactin.

Lee W, Schaefer K, Qiao Y, Srisuknimit V, Steinmetz H, Müller R, Kahne D, Walker S.

J Am Chem Soc. 2016 Jan 13;138(1):100-3. doi: 10.1021/jacs.5b11807. Epub 2015 Dec 24.

30.

Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane.

Simpson BW, May JM, Sherman DJ, Kahne D, Ruiz N.

Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). pii: 20150029. doi: 10.1098/rstb.2015.0029. Review.

31.

Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane.

May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D.

Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). pii: 20150027. doi: 10.1098/rstb.2015.0027. Review.

32.

Inhibition of the β-barrel assembly machine by a peptide that binds BamD.

Hagan CL, Wzorek JS, Kahne D.

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2011-6. doi: 10.1073/pnas.1415955112. Epub 2015 Feb 2.

33.

A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface.

Grabowicz M, Andres D, Lebar MD, Malojčić G, Kahne D, Silhavy TJ.

Elife. 2014 Dec 31;3:e05334. doi: 10.7554/eLife.05334.

34.

Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction.

Qiao Y, Lebar MD, Schirner K, Schaefer K, Tsukamoto H, Kahne D, Walker S.

J Am Chem Soc. 2014 Oct 22;136(42):14678-81. doi: 10.1021/ja508147s. Epub 2014 Oct 10.

35.

Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis.

Lebar MD, May JM, Meeske AJ, Leiman SA, Lupoli TJ, Tsukamoto H, Losick R, Rudner DZ, Walker S, Kahne D.

J Am Chem Soc. 2014 Aug 6;136(31):10874-7. doi: 10.1021/ja505668f. Epub 2014 Jul 24.

36.

Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.

Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N.

Science. 2014 Jul 11;345(6193):220-2. doi: 10.1126/science.1254522.

37.

LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface.

Malojčić G, Andres D, Grabowicz M, George AH, Ruiz N, Silhavy TJ, Kahne D.

Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9467-72. doi: 10.1073/pnas.1402746111. Epub 2014 Jun 17.

38.

Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport.

Sherman DJ, Lazarus MB, Murphy L, Liu C, Walker S, Ruiz N, Kahne D.

Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4982-7. doi: 10.1073/pnas.1323516111. Epub 2014 Mar 17.

39.

Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms.

Lupoli TJ, Lebar MD, Markovski M, Bernhardt T, Kahne D, Walker S.

J Am Chem Soc. 2014 Jan 8;136(1):52-5. doi: 10.1021/ja410813j. Epub 2013 Dec 17.

40.

Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division.

Rebets Y, Lupoli T, Qiao Y, Schirner K, Villet R, Hooper D, Kahne D, Walker S.

ACS Chem Biol. 2014 Feb 21;9(2):459-67. doi: 10.1021/cb4006744. Epub 2013 Nov 20.

41.

On the essentiality of lipopolysaccharide to Gram-negative bacteria.

Zhang G, Meredith TC, Kahne D.

Curr Opin Microbiol. 2013 Dec;16(6):779-85. doi: 10.1016/j.mib.2013.09.007. Epub 2013 Oct 19. Review.

42.

D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R.

J Bacteriol. 2013 Dec;195(23):5391-5. doi: 10.1128/JB.00975-13. Epub 2013 Oct 4.

43.

bam Lipoproteins Assemble BamA in vitro.

Hagan CL, Westwood DB, Kahne D.

Biochemistry. 2013 Sep 3;52(35):6108-13. doi: 10.1021/bi400865z. Epub 2013 Aug 21.

44.

Validation of inhibitors of an ABC transporter required to transport lipopolysaccharide to the cell surface in Escherichia coli.

Sherman DJ, Okuda S, Denny WA, Kahne D.

Bioorg Med Chem. 2013 Aug 15;21(16):4846-51. doi: 10.1016/j.bmc.2013.04.020. Epub 2013 Apr 18.

45.

Forming cross-linked peptidoglycan from synthetic gram-negative Lipid II.

Lebar MD, Lupoli TJ, Tsukamoto H, May JM, Walker S, Kahne D.

J Am Chem Soc. 2013 Mar 27;135(12):4632-5. doi: 10.1021/ja312510m. Epub 2013 Mar 13.

46.

Tuning the moenomycin pharmacophore to enable discovery of bacterial cell wall synthesis inhibitors.

Gampe CM, Tsukamoto H, Doud EH, Walker S, Kahne D.

J Am Chem Soc. 2013 Mar 13;135(10):3776-9. doi: 10.1021/ja4000933. Epub 2013 Mar 4.

47.

The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains.

Villa R, Martorana AM, Okuda S, Gourlay LJ, Nardini M, Sperandeo P, Dehò G, Bolognesi M, Kahne D, Polissi A.

J Bacteriol. 2013 Mar;195(5):1100-8. doi: 10.1128/JB.02057-12. Epub 2013 Jan 4.

48.

Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli.

Okuda S, Freinkman E, Kahne D.

Science. 2012 Nov 30;338(6111):1214-7. doi: 10.1126/science.1228984. Epub 2012 Nov 8.

49.

Distinct single-cell morphological dynamics under beta-lactam antibiotics.

Yao Z, Kahne D, Kishony R.

Mol Cell. 2012 Dec 14;48(5):705-12. doi: 10.1016/j.molcel.2012.09.016. Epub 2012 Oct 25.

50.

Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export.

Chng SS, Xue M, Garner RA, Kadokura H, Boyd D, Beckwith J, Kahne D.

Science. 2012 Sep 28;337(6102):1665-8. Epub 2012 Aug 30.

Supplemental Content

Support Center