Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 71

1.

A Simple Combined Use of CRISPR-Cas9 and Cre-LoxP Technologies for Generating Conditional Gene Knockouts in Mammalian Cells.

Noiman T, Kahana C.

CRISPR J. 2018 Aug;1:278-285. doi: 10.1089/crispr.2018.0010.

PMID:
31021220
2.

The antizyme family for regulating polyamines.

Kahana C.

J Biol Chem. 2018 Nov 30;293(48):18730-18735. doi: 10.1074/jbc.TM118.003339. Epub 2018 Oct 24. Review.

3.

Virus-Induced Changes in mRNA Secondary Structure Uncover cis-Regulatory Elements that Directly Control Gene Expression.

Mizrahi O, Nachshon A, Shitrit A, Gelbart IA, Dobesova M, Brenner S, Kahana C, Stern-Ginossar N.

Mol Cell. 2018 Dec 6;72(5):862-874.e5. doi: 10.1016/j.molcel.2018.09.003. Epub 2018 Oct 11.

4.

Protein degradation, the main hub in the regulation of cellular polyamines.

Kahana C.

Biochem J. 2016 Dec 15;473(24):4551-4558. Review.

PMID:
27941031
5.

Circadian Clock Control by Polyamine Levels through a Mechanism that Declines with Age.

Zwighaft Z, Aviram R, Shalev M, Rousso-Noori L, Kraut-Cohen J, Golik M, Brandis A, Reinke H, Aharoni A, Kahana C, Asher G.

Cell Metab. 2015 Nov 3;22(5):874-85. doi: 10.1016/j.cmet.2015.09.011. Epub 2015 Oct 8.

6.

Dual Regulatory Role of Polyamines in Adipogenesis.

Brenner S, Bercovich Z, Feiler Y, Keshet R, Kahana C.

J Biol Chem. 2015 Nov 6;290(45):27384-92. doi: 10.1074/jbc.M115.686980. Epub 2015 Sep 22.

7.

Expression profiling and biochemical analysis suggest stress response as a potential mechanism inhibiting proliferation of polyamine-depleted cells.

Landau G, Ran A, Bercovich Z, Feldmesser E, Horn-Saban S, Korkotian E, Jacob-Hirsh J, Rechavi G, Ron D, Kahana C.

J Biol Chem. 2012 Oct 19;287(43):35825-37. doi: 10.1074/jbc.M112.381335. Epub 2012 Aug 31.

8.

A polymorphism that delays fibrosis in hepatitis C promotes alternative splicing of AZIN1, reducing fibrogenesis.

Paris AJ, Snapir Z, Christopherson CD, Kwok SY, Lee UE, Ghiassi-Nejad Z, Kocabayoglu P, Sninsky JJ, Llovet JM, Kahana C, Friedman SL.

Hepatology. 2011 Dec;54(6):2198-207. doi: 10.1002/hep.24608.

9.

Antizyme affects cell proliferation and viability solely through regulating cellular polyamines.

Bercovich Z, Snapir Z, Keren-Paz A, Kahana C.

J Biol Chem. 2011 Sep 30;286(39):33778-83. doi: 10.1074/jbc.M111.270637. Epub 2011 Aug 10.

10.

Identification, assay, and functional analysis of the antizyme inhibitor family.

Kahana C.

Methods Mol Biol. 2011;720:269-78. doi: 10.1007/978-1-61779-034-8_16.

PMID:
21318879
11.

Depressive symptoms are associated with food insufficiency and nutritional deficiencies in poor community-dwelling elderly people.

German L, Kahana C, Rosenfeld V, Zabrowsky I, Wiezer Z, Fraser D, Shahar DR.

J Nutr Health Aging. 2011 Jan;15(1):3-8.

PMID:
21267514
12.

c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics.

Adler J, Reuven N, Kahana C, Shaul Y.

Mol Cell Biol. 2010 Aug;30(15):3767-78. doi: 10.1128/MCB.00899-09. Epub 2010 May 24.

13.

The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation.

Landau G, Bercovich Z, Park MH, Kahana C.

J Biol Chem. 2010 Apr 23;285(17):12474-81. doi: 10.1074/jbc.M110.106419. Epub 2010 Feb 24.

14.

Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor.

Kahana C.

Essays Biochem. 2009 Nov 4;46:47-61. doi: 10.1042/bse0460004. Review.

PMID:
20095969
15.

Antizyme and antizyme inhibitor, a regulatory tango.

Kahana C.

Cell Mol Life Sci. 2009 Aug;66(15):2479-88. doi: 10.1007/s00018-009-0033-3. Epub 2009 Apr 28. Review.

PMID:
19399584
16.

Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation.

Snapir Z, Keren-Paz A, Bercovich Z, Kahana C.

Biochem J. 2009 Apr 1;419(1):99-103, 1 p following 103. doi: 10.1042/BJ20081874.

PMID:
19076071
17.

Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function.

Albeck S, Dym O, Unger T, Snapir Z, Bercovich Z, Kahana C.

Protein Sci. 2008 May;17(5):793-802. doi: 10.1110/ps.073427208. Epub 2008 Mar 27.

18.

Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme.

Porat Z, Landau G, Bercovich Z, Krutauz D, Glickman M, Kahana C.

J Biol Chem. 2008 Feb 22;283(8):4528-34. Epub 2007 Dec 18.

19.
20.

Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines.

Kahana C.

Amino Acids. 2007 Aug;33(2):225-30. Epub 2007 Apr 4. Review.

PMID:
17404802
21.
22.

Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions.

Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C.

Oncogene. 2006 Aug 24;25(37):5163-72. Epub 2006 Mar 27.

PMID:
16568078
23.

Cellular localization and phosphorylation of Hrb1p is independent of Sky1p.

Porat Z, Erez O, Kahana C.

Biochim Biophys Acta. 2006 Feb;1763(2):207-13. Epub 2006 Jan 25.

24.

Mechanism of polyamine tolerance in yeast: novel regulators and insights.

Porat Z, Wender N, Erez O, Kahana C.

Cell Mol Life Sci. 2005 Dec;62(24):3106-16.

PMID:
16374585
25.

Mechanisms of protein degradation: an odyssey with ODC.

Kahana C, Asher G, Shaul Y.

Cell Cycle. 2005 Nov;4(11):1461-4. Epub 2005 Nov 22. Review.

PMID:
16205122
26.
27.

Cell-free assay for ubiquitin-independent proteasomal protein degradation.

Kahana C, Reiss Y.

Methods Mol Biol. 2005;301:83-96.

PMID:
15917628
28.

20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1.

Asher G, Bercovich Z, Tsvetkov P, Shaul Y, Kahana C.

Mol Cell. 2005 Mar 4;17(5):645-55.

29.

A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73.

Asher G, Tsvetkov P, Kahana C, Shaul Y.

Genes Dev. 2005 Feb 1;19(3):316-21.

30.
31.

Putrescine activates oxidative stress dependent apoptotic death in ornithine decarboxylase overproducing mouse myeloma cells.

Erez O, Goldstaub D, Friedman J, Kahana C.

Exp Cell Res. 2002 Nov 15;281(1):148-56.

PMID:
12441138
32.

Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1.

Asher G, Lotem J, Sachs L, Kahana C, Shaul Y.

Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13125-30. Epub 2002 Sep 13.

33.
34.

Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent.

Gandre S, Kahana C.

Biochem Biophys Res Commun. 2002 Apr 26;293(1):139-44.

PMID:
12054575
36.

Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105.

Ciechanover A, Gonen H, Bercovich B, Cohen S, Fajerman I, Israël A, Mercurio F, Kahana C, Schwartz AL, Iwai K, Orian A.

Biochimie. 2001 Mar-Apr;83(3-4):341-9.

PMID:
11295495
38.

Poliovirus 2A protease induces apoptotic cell death.

Goldstaub D, Gradi A, Bercovitch Z, Grosmann Z, Nophar Y, Luria S, Sonenberg N, Kahana C.

Mol Cell Biol. 2000 Feb;20(4):1271-7.

39.
40.

Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT.

Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B.

EMBO J. 1998 Sep 1;17(17):5085-94.

41.

Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway.

Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A.

Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8058-63.

42.
44.

Degradation of ornithine decarboxylase by the mammalian and yeast 26S proteasome complexes requires all the components of the protease.

Elias S, Bercovich B, Kahana C, Coffino P, Fischer M, Hilt W, Wolf DH, Ciechanover A.

Eur J Biochem. 1995 Apr 1;229(1):276-83.

45.

The 26S proteasome degrades mouse and yeast ornithine decarboxylase in yeast cells.

Mamroud-Kidron E, Kahana C.

FEBS Lett. 1994 Dec 19;356(2-3):162-4.

46.
47.

Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu.

Gonen H, Smith CE, Siegel NR, Kahana C, Merrick WC, Chakraburtty K, Schwartz AL, Ciechanover A.

Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7648-52.

48.

Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting.

Rom E, Kahana C.

Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3959-63. Erratum in: Proc Natl Acad Sci U S A 1994 Sep 13;91(19):9195.

49.

The 20S proteasome mediates the degradation of mouse and yeast ornithine decarboxylase in yeast cells.

Mamroud-Kidron E, Rosenberg-Hasson Y, Rom E, Kahana C.

FEBS Lett. 1994 Jan 17;337(3):239-42.

50.

Gly387 of murine ornithine decarboxylase is essential for the formation of stable homodimers.

Tobias KE, Mamroud-Kidron E, Kahana C.

Eur J Biochem. 1993 Nov 15;218(1):245-50.

Supplemental Content

Loading ...
Support Center