Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Translating Research as an Approach to Enhance Science Engagement.

Juarez MT, Kenet CM.

Int J Environ Res Public Health. 2018 Aug 15;15(8). pii: E1749. doi: 10.3390/ijerph15081749.

2.

Communicating Science through a Novel Type of Journal.

Juarez MT, Kenet CM, Johnson CN.

CBE Life Sci Educ. 2017 Summer;16(2). pii: le2. doi: 10.1187/cbe.16-12-0345. No abstract available.

3.

Toll pathway is required for wound-induced expression of barrier repair genes in the Drosophila epidermis.

Capilla A, Karachentsev D, Patterson RA, Hermann A, Juarez MT, McGinnis W.

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2682-E2688. doi: 10.1073/pnas.1613917114. Epub 2017 Mar 13.

4.
5.

Microinjection wound assay and in vivo localization of epidermal wound response reporters in Drosophila embryos.

Juarez MT, Patterson RA, Li W, McGinnis W.

J Vis Exp. 2013 Nov 1;(81):e50750. doi: 10.3791/50750.

6.

Serine proteolytic pathway activation reveals an expanded ensemble of wound response genes in Drosophila.

Patterson RA, Juarez MT, Hermann A, Sasik R, Hardiman G, McGinnis W.

PLoS One. 2013 Apr 24;8(4):e61773. doi: 10.1371/journal.pone.0061773. Print 2013.

7.

The functions of grainy head-like proteins in animals and fungi and the evolution of apical extracellular barriers.

Paré A, Kim M, Juarez MT, Brody S, McGinnis W.

PLoS One. 2012;7(5):e36254. doi: 10.1371/journal.pone.0036254. Epub 2012 May 9.

8.

Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila.

Juarez MT, Patterson RA, Sandoval-Guillen E, McGinnis W.

PLoS Genet. 2011 Dec;7(12):e1002424. doi: 10.1371/journal.pgen.1002424. Epub 2011 Dec 29.

9.

Multiple transcription factor codes activate epidermal wound-response genes in Drosophila.

Pearson JC, Juarez MT, Kim M, Drivenes Ø, McGinnis W.

Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2224-9. doi: 10.1073/pnas.0810219106. Epub 2009 Jan 23. Erratum in: Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20134. Drivenes, Øyvind [added].

10.

Short communication: effect of dry therapy using an intramammary infusion on bulk tank somatic cell count in sheep.

Gonzalo C, Linage B, Carriedo JA, Juárez MT, Beneitez E, Martínez A, De La Fuente LF.

J Dairy Sci. 2009 Jan;92(1):156-9. doi: 10.3168/jds.2008-1403.

11.

Two small regulatory RNAs establish opposing fates of a developmental axis.

Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC.

Genes Dev. 2007 Apr 1;21(7):750-5.

12.

Short communication: bulk tank total bacterial count in dairy sheep: factors of variation and relationship with somatic cell count.

Gonzalo C, Carriedo JA, Beneitez E, Juárez MT, De La Fuente LF, San Primitivo F.

J Dairy Sci. 2006 Feb;89(2):549-52.

13.

A conserved microRNA signal specifies leaf polarity.

Timmermans MC, Juarez MT, Phelps-Durr TL.

Cold Spring Harb Symp Quant Biol. 2004;69:409-17. Review. No abstract available.

PMID:
16117675
14.

Factors of variation influencing bulk tank somatic cell count in dairy sheep.

Gonzalo C, Carriedo JA, Blanco MA, Beneitez E, Juárez MT, De La Fuente LF, Primitivo FS.

J Dairy Sci. 2005 Mar;88(3):969-74.

15.

Specification of adaxial cell fate during maize leaf development.

Juarez MT, Twigg RW, Timmermans MC.

Development. 2004 Sep;131(18):4533-44.

16.

microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity.

Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC.

Nature. 2004 Mar 4;428(6978):84-8.

17.

Supplemental Content

Loading ...
Support Center