Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 136

1.

Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function.

Ma 马漫修 M, Ramirez AD, Wang 王彤 T, Roberts RL, Harmon KE, Schoppik D, Sharma A, Kuang C, Goei SL, Gagnon JA, Zimmerman S, Tsai SQ, Reyon D, Joung JK, Aksay ERF, Schier AF, Pan 潘於勤 YA.

J Neurosci. 2019 Nov 4. pii: 1783-19. doi: 10.1523/JNEUROSCI.1783-19.2019. [Epub ahead of print]

PMID:
31685652
2.

High levels of AAV vector integration into CRISPR-induced DNA breaks.

Hanlon KS, Kleinstiver BP, Garcia SP, Zaborowski MP, Volak A, Spirig SE, Muller A, Sousa AA, Tsai SQ, Bengtsson NE, Lööv C, Ingelsson M, Chamberlain JS, Corey DP, Aryee MJ, Joung JK, Breakefield XO, Maguire CA, György B.

Nat Commun. 2019 Sep 30;10(1):4439. doi: 10.1038/s41467-019-12449-2.

3.

CRISPR DNA base editors with reduced RNA off-target and self-editing activities.

Grünewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Joung JK.

Nat Biotechnol. 2019 Sep;37(9):1041-1048. doi: 10.1038/s41587-019-0236-6. Epub 2019 Sep 2.

PMID:
31477922
4.

Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss.

György B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD, Kleinstiver BP, Garcia SP, Zaborowski MP, Solanes P, Spataro S, Schneider BL, Joung JK, Géléoc GSG, Holt JR, Corey DP.

Nat Med. 2019 Jul;25(7):1123-1130. doi: 10.1038/s41591-019-0500-9. Epub 2019 Jul 3.

PMID:
31270503
5.

Impact of Genetic Variation on CRISPR-Cas Targeting.

Canver MC, Joung JK, Pinello L.

CRISPR J. 2018 Apr;1(2):159-170. doi: 10.1089/crispr.2017.0016. Review.

6.

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK.

Nature. 2019 May;569(7756):433-437. doi: 10.1038/s41586-019-1161-z. Epub 2019 Apr 17.

7.

Adopt a moratorium on heritable genome editing.

Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, Friedrich B, Joung JK, Li J, Liu D, Naldini L, Nie JB, Qiu R, Schoene-Seifert B, Shao F, Terry S, Wei W, Winnacker EL.

Nature. 2019 Mar;567(7747):165-168. doi: 10.1038/d41586-019-00726-5. No abstract available.

PMID:
30867611
8.

CRISPResso2 provides accurate and rapid genome editing sequence analysis.

Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, Cole MA, Liu DR, Joung JK, Bauer DE, Pinello L.

Nat Biotechnol. 2019 Mar;37(3):224-226. doi: 10.1038/s41587-019-0032-3. No abstract available.

9.

Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.

Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK.

Nat Biotechnol. 2019 Mar;37(3):276-282. doi: 10.1038/s41587-018-0011-0. Epub 2019 Feb 11.

10.

CRISPR-SURF: discovering regulatory elements by deconvolution of CRISPR tiling screen data.

Hsu JY, Fulco CP, Cole MA, Canver MC, Pellin D, Sher F, Farouni R, Clement K, Guo JA, Biasco L, Orkin SH, Engreitz JM, Lander ES, Joung JK, Bauer DE, Pinello L.

Nat Methods. 2018 Dec;15(12):992-993. doi: 10.1038/s41592-018-0225-6. No abstract available.

11.

Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq.

Lazzarotto CR, Nguyen NT, Tang X, Malagon-Lopez J, Guo JA, Aryee MJ, Joung JK, Tsai SQ.

Nat Protoc. 2018 Nov;13(11):2615-2642. doi: 10.1038/s41596-018-0055-0.

12.

In vivo CRISPR editing with no detectable genome-wide off-target mutations.

Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K, Garcia SP, Fellows MD, Porritt MJ, Firth MA, Carreras A, Baccega T, Seeliger F, Bjursell M, Tsai SQ, Nguyen NT, Nitsch R, Mayr LM, Pinello L, Bohlooly-Y M, Aryee MJ, Maresca M, Joung JK.

Nature. 2018 Sep;561(7723):416-419. doi: 10.1038/s41586-018-0500-9. Epub 2018 Sep 12.

13.

Discovery of widespread type I and type V CRISPR-Cas inhibitors.

Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD, Joung JK, Kleinstiver BP, Bondy-Denomy J.

Science. 2018 Oct 12;362(6411):240-242. doi: 10.1126/science.aau5174. Epub 2018 Sep 6.

14.

An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities.

Gehrke JM, Cervantes O, Clement MK, Wu Y, Zeng J, Bauer DE, Pinello L, Joung JK.

Nat Biotechnol. 2018 Nov;36(10):977-982. doi: 10.1038/nbt.4199. Epub 2018 Jul 30.

15.

Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs.

Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J, Gao K, Hoang L, Elibol M, Doench JG, Fusi N.

Nat Biomed Eng. 2018 Jan;2(1):38-47. doi: 10.1038/s41551-017-0178-6. Epub 2018 Jan 10.

16.

Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize.

Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK, Qi Y, Wang K.

Plant Biotechnol J. 2019 Feb;17(2):362-372. doi: 10.1111/pbi.12982. Epub 2018 Jul 22.

17.

Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.

Dastidar S, Ardui S, Singh K, Majumdar D, Nair N, Fu Y, Reyon D, Samara E, Gerli MFM, Klein AF, De Schrijver W, Tipanee J, Seneca S, Tulalamba W, Wang H, Chai YC, In't Veld P, Furling D, Tedesco FS, Vermeesch JR, Joung JK, Chuah MK, VandenDriessche T.

Nucleic Acids Res. 2018 Sep 19;46(16):8275-8298. doi: 10.1093/nar/gky548.

18.

CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease.

György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, Lannfelt L, Maguire CA, Joung JK, Hyman BT, Breakefield XO, Ingelsson M.

Mol Ther Nucleic Acids. 2018 Jun 1;11:429-440. doi: 10.1016/j.omtn.2018.03.007. Epub 2018 Mar 16.

19.

Temporal and Spatial Post-Transcriptional Regulation of Zebrafish tie1 mRNA by Long Noncoding RNA During Brain Vascular Assembly.

Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung JK, Ramchandran R.

Arterioscler Thromb Vasc Biol. 2018 Jul;38(7):1562-1575. doi: 10.1161/ATVBAHA.118.310848. Epub 2018 May 3.

20.

Response to "Unexpected mutations after CRISPR-Cas9 editing in vivo".

Lareau CA, Clement K, Hsu JY, Pattanayak V, Joung JK, Aryee MJ, Pinello L.

Nat Methods. 2018 Apr;15(4):238-239. doi: 10.1038/nmeth.4541. Epub 2018 Mar 30. No abstract available.

PMID:
29600992
21.

Allele-Specific CRISPR-Cas9 Genome Editing of the Single-Base P23H Mutation for Rhodopsin-Associated Dominant Retinitis Pigmentosa.

Li P, Kleinstiver BP, Leon MY, Prew MS, Navarro-Gomez D, Greenwald SH, Pierce EA, Joung JK, Liu Q.

CRISPR J. 2018 Feb;1:55-64. doi: 10.1089/crispr.2017.0009.

22.

Gene therapy comes of age.

Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M.

Science. 2018 Jan 12;359(6372). pii: eaan4672. doi: 10.1126/science.aan4672. Review.

PMID:
29326244
23.

Nodal patterning without Lefty inhibitory feedback is functional but fragile.

Rogers KW, Lord ND, Gagnon JA, Pauli A, Zimmerman S, Aksel DC, Reyon D, Tsai SQ, Joung JK, Schier AF.

Elife. 2017 Dec 7;6. pii: e28785. doi: 10.7554/eLife.28785.

24.

Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors.

Tak YE, Kleinstiver BP, Nuñez JK, Hsu JY, Horng JE, Gong J, Weissman JS, Joung JK.

Nat Methods. 2017 Dec;14(12):1163-1166. doi: 10.1038/nmeth.4483. Epub 2017 Oct 30.

25.

Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.

Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA.

Nature. 2017 Oct 19;550(7676):407-410. doi: 10.1038/nature24268. Epub 2017 Sep 20.

26.

Genome editing of factor X in zebrafish reveals unexpected tolerance of severe defects in the common pathway.

Hu Z, Liu Y, Huarng MC, Menegatti M, Reyon D, Rost MS, Norris ZG, Richter CE, Stapleton AN, Chi NC, Peyvandi F, Joung JK, Shavit JA.

Blood. 2017 Aug 3;130(5):666-676. doi: 10.1182/blood-2017-02-765206. Epub 2017 Jun 2.

27.

CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets.

Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK.

Nat Methods. 2017 Jun;14(6):607-614. doi: 10.1038/nmeth.4278. Epub 2017 May 1.

28.

Camptothecin resistance is determined by the regulation of topoisomerase I degradation mediated by ubiquitin proteasome pathway.

Ando K, Shah AK, Sachdev V, Kleinstiver BP, Taylor-Parker J, Welch MM, Hu Y, Salgia R, White FM, Parvin JD, Ozonoff A, Rameh LE, Joung JK, Bharti AK.

Oncotarget. 2017 Jul 4;8(27):43733-43751. doi: 10.18632/oncotarget.16376.

29.

Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.

Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK.

Nat Biotechnol. 2016 Aug;34(8):869-74. doi: 10.1038/nbt.3620. Epub 2016 Jun 27.

30.

Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma.

Saha SK, Gordan JD, Kleinstiver BP, Vu P, Najem MS, Yeo JC, Shi L, Kato Y, Levin RS, Webber JT, Damon LJ, Egan RK, Greninger P, McDermott U, Garnett MJ, Jenkins RL, Rieger-Christ KM, Sullivan TB, Hezel AF, Liss AS, Mizukami Y, Goyal L, Ferrone CR, Zhu AX, Joung JK, Shokat KM, Benes CH, Bardeesy N.

Cancer Discov. 2016 Jul;6(7):727-39. doi: 10.1158/2159-8290.CD-15-1442. Epub 2016 May 26.

31.

Open-source guideseq software for analysis of GUIDE-seq data.

Tsai SQ, Topkar VV, Joung JK, Aryee MJ.

Nat Biotechnol. 2016 May 6;34(5):483. doi: 10.1038/nbt.3534. No abstract available.

PMID:
27153277
32.

Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.

Tsai SQ, Joung JK.

Nat Rev Genet. 2016 May;17(5):300-12. doi: 10.1038/nrg.2016.28. Review.

PMID:
27087594
33.

High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK.

Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.

34.

Accelerating research through reagent repositories: the genome editing example.

Joung JK, Voytas DF, Kamens J.

Genome Biol. 2015 Nov 20;16:255. doi: 10.1186/s13059-015-0830-y.

35.

Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition.

Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK.

Nat Biotechnol. 2015 Dec;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub 2015 Nov 2.

36.

Genome Editing in Human Cells Using CRISPR/Cas Nucleases.

Wyvekens N, Tsai SQ, Joung JK.

Curr Protoc Mol Biol. 2015 Oct 1;112:31.3.1-31.3.18. doi: 10.1002/0471142727.mb3103s112.

37.

CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants.

Spisák S, Lawrenson K, Fu Y, Csabai I, Cottman RT, Seo JH, Haiman C, Han Y, Lenci R, Li Q, Tisza V, Szállási Z, Herbert ZT, Chabot M, Pomerantz M, Solymosi N; GAME-ON/ELLIPSE Consortium, Gayther SA, Joung JK, Freedman ML.

Nat Med. 2015 Nov;21(11):1357-63. doi: 10.1038/nm.3975. Epub 2015 Sep 23.

38.

Continuous directed evolution of DNA-binding proteins to improve TALEN specificity.

Hubbard BP, Badran AH, Zuris JA, Guilinger JP, Davis KM, Chen L, Tsai SQ, Sander JD, Joung JK, Liu DR.

Nat Methods. 2015 Oct;12(10):939-42. doi: 10.1038/nmeth.3515. Epub 2015 Aug 10.

39.

Unwanted mutations: Standards needed for gene-editing errors.

Joung JK.

Nature. 2015 Jul 9;523(7559):158. doi: 10.1038/523158a. No abstract available.

PMID:
26156364
40.

Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK.

Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.

41.

Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing.

Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ.

Hum Gene Ther. 2015 Jul;26(7):425-31. doi: 10.1089/hum.2015.084.

42.

Context influences on TALE-DNA binding revealed by quantitative profiling.

Rogers JM, Barrera LA, Reyon D, Sander JD, Kellis M, Joung JK, Bulyk ML.

Nat Commun. 2015 Jun 11;6:7440. doi: 10.1038/ncomms8440.

43.

Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model.

Rahman SH, Kuehle J, Reimann C, Mlambo T, Alzubi J, Maeder ML, Riedel H, Fisch P, Cantz T, Rudolph C, Mussolino C, Joung JK, Schambach A, Cathomen T.

PLoS Genet. 2015 May 22;11(5):e1005239. doi: 10.1371/journal.pgen.1005239. eCollection 2015 May.

44.

Hypoxia drives transient site-specific copy gain and drug-resistant gene expression.

Black JC, Atabakhsh E, Kim J, Biette KM, Van Rechem C, Ladd B, Burrowes PD, Donado C, Mattoo H, Kleinstiver BP, Song B, Andriani G, Joung JK, Iliopoulos O, Montagna C, Pillai S, Getz G, Whetstine JR.

Genes Dev. 2015 May 15;29(10):1018-31. doi: 10.1101/gad.259796.115.

45.

Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases.

Hwang WY, Fu Y, Reyon D, Gonzales AP, Joung JK, Yeh JR.

Methods Mol Biol. 2015;1311:317-34. doi: 10.1007/978-1-4939-2687-9_21.

PMID:
25981483
46.

Genome editing technologies: defining a path to clinic.

Corrigan-Curay J, O'Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D, Sadelain M, Scharenberg AM, von Kalle C, Zhang F, Jambou R, Rosenthal E, Hassani M, Singh A, Porteus MH.

Mol Ther. 2015 May;23(5):796-806. doi: 10.1038/mt.2015.54. No abstract available.

47.

Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.

Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM, Akopian V, Gifford CA, Donaghey J, Galonska C, Pop R, Reyon D, Tsai SQ, Mallard W, Joung JK, Rinn JL, Gnirke A, Meissner A.

Nat Genet. 2015 May;47(5):469-78. doi: 10.1038/ng.3258. Epub 2015 Mar 30.

48.

Chromatin regulation at the frontier of synthetic biology.

Keung AJ, Joung JK, Khalil AS, Collins JJ.

Nat Rev Genet. 2015 Mar;16(3):159-71. doi: 10.1038/nrg3900. Epub 2015 Feb 10. Review.

49.

Fanconi anemia gene editing by the CRISPR/Cas9 system.

Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J.

Hum Gene Ther. 2015 Feb;26(2):114-26. doi: 10.1089/hum.2014.111.

50.

GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK.

Nat Biotechnol. 2015 Feb;33(2):187-197. doi: 10.1038/nbt.3117. Epub 2014 Dec 16.

Supplemental Content

Loading ...
Support Center